login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A202717 Triangle of numerators of coefficients of the polynomial Q^(3)_m(n) defined by the recursion Q^(3)_0(n)=1; for m>=1, Q^(3)_m(n) = Sum_{i=1...n} i^3*Q^(3)_(m-1)(i). 1
1, 1, 2, 1, 0, 0, 21, 132, 294, 252, 21, -56, 0, 8, 0, 35, 450, 2293, 5700, 6405, 770, -3661, -240, 2320, 40, -672, 0, 0, 9555, 207480, 1889316, 9216312, 25051026, 33229560, 3678948, -35339304, -2666157, 51171120, 2178176, -49878192, -792064, 24460800, 4160, -3714816, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

For m>=0, the denominator for all 4*m+1 terms of the m-th row is A202368(m+1).

See comment to A175669.

LINKS

Table of n, a(n) for n=0..44.

FORMULA

Q^(3)_n(1)=1.

EXAMPLE

The sequence of polynomials begins

Q^(3)_0=1,

Q^(3)_1=(x^4+2*x^3+x^2)/4,

Q^(3)_2=(21*x^8+132*x^7+294*x^6+252*x^5+21*x^4-56*x^3+8*x)/672,

Q^(3)_3=(35*x^12+450*x^11+2293*x^10+5700*x^9+6405*x^8+770*x^7-3661*x^6-240*x^5+2320*x^4+40x^3-672*x^2)/13440.

CROSSREFS

Cf. A202339, A053657, A202367, A202368, A202369, A175699.

Sequence in context: A057272 A062735 A054547 * A291195 A025439 A227840

Adjacent sequences:  A202714 A202715 A202716 * A202718 A202719 A202720

KEYWORD

sign,tabf

AUTHOR

Vladimir Shevelev and Peter J. C. Moses, Dec 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 15:32 EDT 2019. Contains 328116 sequences. (Running on oeis4.)