login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118935
E.g.f.: A(x) = exp( Sum_{n>=0} x^(4^n)/4^((4^n-1)/3) ).
3
1, 1, 1, 1, 7, 31, 91, 211, 1681, 12097, 57961, 209881, 1874071, 17842111, 117303187, 575683291, 26124309121, 412992394081, 3670397429041, 23161791013777, 729420726627271, 13374596287229311, 143560108604864491
OFFSET
0,5
COMMENTS
Equals invariant column vector V that satisfies matrix product A118933*V = V, where A118933(n,k) = n!/[k!(n-4k)!*4^k] for n>=4*k>=0; thus a(n) = Sum_{k=0..[n/4]} A118933(n,k)*a(k), with a(0)=1.
FORMULA
a(n) = Sum_{k=0..[n/4]} n!/[k!*(n-4*k)!*4^k] * a(k), with a(0)=1.
EXAMPLE
E.g.f. A(x) = exp( x + x^4/4 + x^16/4^5 + x^64/3^21 + x^256/3^85 +..)
= 1 + 1*x + 1*x^2/2! + 1*x^3/3! + 7*x^4/4! + 31*x^5/5!+ 91*x^6/6!+...
PROG
(PARI) a(n)=if(n==0, 1, sum(k=0, n\4, n!/(k!*(n-4*k)!*4^k)*a(k)))
(PARI) /* Defined by E.G.F.: */ a(n)=n!*polcoeff( exp(sum(k=0, ceil(log(n+1)/log(4)), x^(4^k)/4^((4^k-1)/3))+x*O(x^n)), n, x)
CROSSREFS
Cf. A118933; variants: A118930, A118932.
Sequence in context: A305290 A262012 A118934 * A226838 A205801 A193437
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 06 2006
STATUS
approved