login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193437
Expansion of e.g.f. exp( Sum_{n>=0} x^(3*n+1)/(3*n+1) ).
4
1, 1, 1, 1, 7, 31, 91, 931, 7441, 38017, 507241, 5864761, 43501591, 713059711, 10776989587, 105784464331, 2052437475361, 38263122487681, 469863736958161, 10518597616325617, 232980391759702951, 3446848352553524191, 87385257330831947851
OFFSET
0,5
COMMENTS
Conjecture: a(n) is divisible by 7^floor(n/7) for n>=0.
Conjecture: a(n) is divisible by p^floor(n/p) for prime p == 1 (mod 3).
a(n) is the number of permutations of n elements with a disjoint cycle decomposition in which every cycle length is == 1 (mod 3). - Simon Tatham, Mar 26 2021
LINKS
FORMULA
a(n) = a(n-1) + (n-3)*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Apr 15 2020
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/3)} binomial(n-1,3*k) * (3*k)! * a(n-3*k-1). - Ilya Gutkovskiy, Jul 14 2021
E.g.f.: A(x) = exp(Integral_{z = 0..x} 1/(1-z^3) dz) = (1-x^3)^(1/6)/(1-x)^(1/2) * exp((1/sqrt(3))*arctan(sqrt(3)*x/(2+x))). - Fabian Pereyra, Oct 14 2023
EXAMPLE
E.g.f.: A(x) = 1 + x + x^2/2! + x^3/3! + 7*x^4/4! + 31*x^5/5! + 91*x^6/6! + 931*x^7/7! +...
where
log(A(x)) = x + x^4/4 + x^7/7 + x^10/10 + x^13/13 + x^16/16 + x^19/19 +...
MATHEMATICA
nmax = 30; CoefficientList[Series[Exp[x*Hypergeometric2F1[1/3, 1, 4/3, x^3]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2020 *)
PROG
(PARI) {a(n)=n!*polcoeff( exp(sum(m=0, n, x^(3*m+1)/(3*m+1))+x*O(x^n)) , n)}
CROSSREFS
Sequence in context: A118935 A226838 A205801 * A199921 A192596 A055899
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 25 2011
STATUS
approved