login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193438
Expansion of e.g.f. exp( Sum_{n>=0} x^(4*n+1)/(4*n+1) ).
3
1, 1, 1, 1, 1, 25, 145, 505, 1345, 43345, 481825, 3027025, 13679425, 528618025, 8796735025, 81517983625, 529655946625, 23619691278625, 526089195906625, 6512769913326625, 55783484692170625, 2802281186570685625, 78369733286598300625, 1221751619270220585625
OFFSET
0,6
COMMENTS
Conjecture: a(n) is divisible by 5^floor(n/5) for n>=0.
Conjecture: a(n) is divisible by p^floor(n/p) for prime p == 1 (mod 4).
LINKS
FORMULA
a(n) = a(n-1) + (n-4)*(n-3)*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Apr 15 2020
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} binomial(n-1,4*k) * (4*k)! * a(n-4*k-1). - Ilya Gutkovskiy, Jul 14 2021
E.g.f.: A(x) = exp(Integral_{z = 0..x} 1/(1-z^4) dz) = exp((arctan(x)+arctanh(x))/2). - Fabian Pereyra, Oct 14 2023
EXAMPLE
E.g.f.: A(x) = 1 + x + x^2/2! + x^3/3! + x^4/4! + 25*x^5/5! + 145*x^6/6! + 505*x^7/7! +...
where
log(A(x)) = x + x^5/5 + x^9/9 + x^13/13 + x^17/17 + x^21/21 + x^25/25 +...
MATHEMATICA
nmax = 30; CoefficientList[Series[Exp[x*Hypergeometric2F1[1/4, 1, 5/4, x^4]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2020 *)
PROG
(PARI) {a(n)=n!*polcoeff( exp(sum(m=0, n, x^(4*m+1)/(4*m+1))+x*O(x^n)) , n)}
(PARI) seq(n) = Vec(serlaplace(exp(intformal(1/(1-x^4) + O(x*x^n)) ))) \\ Andrew Howroyd, Oct 15 2023
CROSSREFS
Sequence in context: A100255 A305269 A052501 * A139152 A123014 A366167
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 25 2011
STATUS
approved