login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193435
exp( Sum_{n>=1} x^n / (n*(n+1)/2) ) = Sum_{n>=0} a(n)*x^n / (n!*(n+1)!).
1
1, 2, 10, 96, 1528, 36720, 1248560, 57272320, 3417283968, 257711328000, 23999961081600, 2707648512307200, 364172045286804480, 57600985355595601920, 10589369533424230348800, 2239779182794304126976000, 540207965396186411279155200
OFFSET
0,2
COMMENTS
Sum_{n>=0} a(n)/(n!*(n+1)!) = exp(2) = 7.389056098930...
EXAMPLE
A(x) = 1 + 2*x/(1!*2!) + 10*x^2/(2!*3!) + 96*x^3/(3!*4!) + 1528*x^4/(4!*5!) +...
where
log(A(x)) = x + x^2/3 + x^3/6 + x^4/10 + x^5/15 + x^6/21 + x^7/28 +...
PROG
(PARI) {a(n)=n!*(n+1)!*polcoeff(exp(sum(m=1, n, x^m/(m*(m+1)/2))+x*O(x^n)), n)}
CROSSREFS
Cf. A193436.
Sequence in context: A346649 A355780 A193290 * A132572 A069247 A368731
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 25 2011
STATUS
approved