|
|
A346649
|
|
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(7*k,k) / (6*k + 1).
|
|
11
|
|
|
1, 2, 10, 95, 1146, 15343, 218407, 3241316, 49588850, 776483636, 12383420161, 200444399493, 3284531747403, 54378741581471, 908238222519566, 15284835717461020, 258933935458506210, 4412025177612412048, 75564998345532498844, 1300158755391113561288
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x * (1 - x)^5 * A(x)^7.
G.f.: Sum_{k>=0} ( binomial(7*k,k) / (6*k + 1) ) * x^k / (1 - x)^(k+1).
a(n) ~ 870199^(n + 3/2) / (282475249 * sqrt(Pi) * n^(3/2) * 2^(6*n + 2) * 3^(6*n + 3/2)). - Vaclav Kotesovec, Jul 30 2021
|
|
MATHEMATICA
|
Table[Sum[Binomial[n, k] Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 19}]
nmax = 19; A[_] = 0; Do[A[x_] = 1/(1 - x) + x (1 - x)^5 A[x]^7 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 19; CoefficientList[Series[Sum[(Binomial[7 k, k]/(6 k + 1)) x^k/(1 - x)^(k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
Table[HypergeometricPFQ[{1/7, 2/7, 3/7, 4/7, 5/7, 6/7, -n}, {1/3, 1/2, 2/3, 5/6, 1, 7/6}, -823543/46656], {n, 0, 19}]
|
|
PROG
|
(PARI) a(n) = sum(k=0, n, binomial(n, k)*binomial(7*k, k)/(6*k + 1)); \\ Michel Marcus, Jul 26 2021
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|