|
|
A355780
|
|
E.g.f. satisfies A(x) = (1 + x)^(2 * A(x)).
|
|
1
|
|
|
1, 2, 10, 96, 1352, 25400, 597816, 16941568, 561993344, 21372060672, 916910785920, 43817650647936, 2308500130055808, 132941831957885184, 8308594453077321984, 560108109905112238080, 40514005700203717945344, 3129925644058623770173440
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
E.g.f.: exp( -LambertW(-2 * log(1+x)) ).
a(n) = Sum_{k=0..n} 2^k * (k+1)^(k-1) * Stirling1(n,k).
E.g.f.: -LambertW(-2*log(1+x)) / (2*log(1+x)).
a(n) ~ sqrt(2) * n^(n-1) / ((exp(exp(-1)/2) - 1)^(n - 1/2) * exp(n - 3/2 + exp(-1)/4)). (End)
|
|
PROG
|
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*log(1+x)))))
(PARI) a(n) = sum(k=0, n, 2^k*(k+1)^(k-1)*stirling(n, k, 1));
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|