login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193439
exp( Sum_{n>=1} a(n-1)*x^n/n!^3 ) = Sum_{n>=0} a(n)/n!^3.
1
1, 1, 5, 68, 1936, 99336, 8326912, 1063584640, 196475565312, 50403792222720, 17382740425346304, 7847087503671023616, 4535069738055660564480, 3292828639234241171484672, 2955617286961757422869504000, 3233957295970672142211481337856
OFFSET
0,3
COMMENTS
Compare to: exp(Sum_{n>=1} A006472(n)*x^n/n!^2) = Sum_{n>=0} A006472(n+1)/n!^2 where A006472(n) = n!*(n-1)!/2^(n-1).
LINKS
FORMULA
E.g.f.: A(x) = exp( Integral 1/x * Integral 1/x * Integral A(x) dx dx dx ). - Paul D. Hanna, Apr 30 2019
EXAMPLE
E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/(n!)^^3 starts as
A(x) = 1 + x + 5*x^2/2!^3 + 68*x^3/3!^3 + 1936*x^4/4!^3 + 99336*x^5/5!^3 + 8326912*x^6/6!^3 + 1063584640*x^7/7!^3 + 196475565312*x^8/8!^3 + 50403792222720*x^9/9!^3 + 17382740425346304*x^10/10!^3 + 7847087503671023616*x^11/11!^3 +...+ a(n)*x^n/n!^3 +...
where
log(A(x)) = x + x^2/2!^3 + 5*x^3/3!^3 + 68*x^4/4!^3 + 1936*x^5/5!^3 + 99336*x^6/6!^3 + 8326912*x^7/7!^3 +...+ a(n-1)*x^n/n!^3 +...
As a power series in x with reduced fractional coefficients, the e.g.f. begins
A(x) = 1 + x + 5/8*x^2 + 17/54*x^3 + 121/864*x^4 + 4139/72000*x^5 + 32527/1458000*x^6 + 1661851/200037600*x^7 + 85275853/28449792000*x^8 + 729221531/691329945600*x^9 + 2514864066167/6913299456000000*x^10 + 141910581301921/1150200196992000000*x^11 + 8201442668648113/198754594040217600000*x^12 + ...
PROG
(PARI) {a(n) = n!^3*polcoeff( exp(x+sum(m=2, n, a(m-1)*x^m/m!^3+x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = my(A=1); for(i=0, n, A = exp( intformal(1/x*intformal(1/x*intformal(A +x*O(x^n)))))); (n!)^3*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Apr 30 2019
CROSSREFS
Sequence in context: A093120 A264697 A319465 * A355086 A337951 A092817
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 25 2011
STATUS
approved