login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093120
Number of convex polyominoes with an n+1 X n+1 minimal bounding square.
2
5, 68, 1110, 19010, 329126, 5693968, 98074332, 1680306750, 28638104550, 485731377560, 8202665891316, 137983709713668, 2313146752430780, 38658742468243520, 644327268137066104, 10712855104602481206
OFFSET
1,1
LINKS
V. J. W. Guo and J. Zeng, The number of convex polyominoes and the generating function of Jacobi polynomials, arXiv:math/0403262 [math.CO], 2004.
FORMULA
a(n) = ((2+n)*C(4*n, 2*n) - 2*n*C(2*n, n)^2)/2, n>0.
MATHEMATICA
a[n_]:= 1/2 (n+2) Binomial[4n, 2n] - n Binomial[2n, n]^2;
Array[a, 16] (* Jean-François Alcover, Jan 15 2019 *)
PROG
(PARI) a(n) = ((2+n)*binomial(4*n, 2*n) - 2*n*binomial(2*n, n)^2)/2; \\ G. C. Greubel, Jun 26 2019
(Magma) [((2+n)*Binomial(4*n, 2*n) - 2*n*Binomial(2*n, n)^2)/2: n in [1..20]]; // G. C. Greubel, Jun 26 2019
(Sage) [((2+n)*binomial(4*n, 2*n) - 2*n*binomial(2*n, n)^2)/2 for n in (1..20)] # G. C. Greubel, Jun 26 2019
(GAP) List([1..20], n-> ((2+n)*Binomial(4*n, 2*n) - 2*n*Binomial(2*n, n)^2)/2) # G. C. Greubel, Jun 26 2019
CROSSREFS
Main diagonal of triangle A093118.
Sequence in context: A165396 A029812 A208562 * A264697 A319465 A193439
KEYWORD
nonn
AUTHOR
Ralf Stephan, Mar 21 2004
STATUS
approved