login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093118
Triangle T read by rows: T(m,n) = number of convex polyominoes with an m+1 X n+1 minimal bounding rectangle, m > 0, n <= m.
6
5, 13, 68, 25, 222, 1110, 41, 555, 3951, 19010, 61, 1171, 11263, 70438, 329126, 85, 2198, 27468, 216618, 1245986, 5693968, 113, 3788, 59676, 579330, 4022546, 21832492, 98074332, 145, 6117, 118605, 1389927, 11462495, 72887139, 379145115, 1680306750
OFFSET
1,1
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1 <= n <= 150, flattened).
Mireille Bousquet-Mélou, Convex polyominoes and algebraic languages, Journal of Physics A25 (1992), 1935-1944.
Kevin Buchin, Man-Kwun Chiu, Stefan Felsner, Günter Rote, and André Schulz, The Number of Convex Polyominoes with Given Height and Width, arXiv:1903.01095 [math.CO], 2019.
Ira Gessel, On the number of convex polyominoes, Annales des Sciences Mathématiques du Québec, 24 (2000), 63-66.
V. J. W. Guo and J. Zeng, The number of convex polyominoes and the generating function of Jacobi polynomials, arXiv:math/0403262 [math.CO], 2004.
K. Y. Lin and S. J. Chang, Rigorous results for the number of convex polygons on the square and honeycomb lattices, Journal of Physics A21 (1988), 2635-2642.
FORMULA
T(m,n) = ((m+n+m*n)*C(2*m+2*n, 2*m) - 2*m*n*C(m+n, m)^2)/(m+n), for m + n > 0.
T(m,n) = C(2*m+2*n,2*m) + ((2*m+2*n-1)/2)*C(2*m+2*n-2,2*m-1) - 2*(m+n-1) *C(m+n,m)*C(m+n-2,m-1), for m >= 0, n >= 0. - Günter Rote, Feb 12 2019
EXAMPLE
Triangle begins:
5,
13, 68,
25, 222, 1110,
41, 555, 3951, 19010,
61, 1171, 11263, 70438, 329126,
85, 2198, 27468, 216618, 1245986, 5693968,
...
This is the lower half of an infinite square table that is symmetric at the main diagonal (T(m,n)=T(n,m)).
From Günter Rote, Feb 12 2019: (Start)
For m=2 and n=1, the T(2,1)=13 polyominoes in a 3 X 2 rectangle are the five polyominoes
.
+---+---+---+ +---+ +---+---+
| | | | | | | | |
+---+---+---+ +---+---+---+ +---+---+---+
| | | | | | | | | | |
+---+---+---+ +---+---+---+ +---+---+
.
+---+ +---+---+
| | | | |
+---+---+---+ +---+---+---+
| | | | | | | |
+---+---+---+ +---+---+---+
.
plus all their different horizontal and vertical reflections (1 + 2 + 2 + 4 + 4 = 13 polyominoes in total). (End)
MAPLE
T:= (m, n)-> (m+n+m*n)/(m+n)*binomial(2*m+2*n, 2*m)
-2*m*n/(m+n)*binomial(m+n, m)^2:
seq(lprint(seq(T(m, n), n=1..m)), m=1..10); # Alois P. Heinz, Feb 24 2019
MATHEMATICA
T[m_, n_] := (m+n+m n)/(m+n) Binomial[2m + 2n, 2m] - 2 m n/(m+n) Binomial[ m+n, m]^2;
Table[T[m, n], {m, 1, 8}, {n, 1, m}] // Flatten (* Jean-François Alcover, Aug 17 2018 *)
PROG
(Sage)
def T(m, n):
w, h = m+1, n+1 # width and height
p = w+h # half the perimeter
return ( binomial(2*p-4, 2*w-2) + binomial(2*p-6, 2*w-3)*(p-5/2) - 2*(p-3)*binomial(p-2, w-1)*binomial(p-4, w-2) ) # Günter Rote, Feb 13 2019
(PARI) {T(n, k) = ((n+k+n*k)*binomial(2*n+2*k, 2*n) - 2*n*k*binomial(n+k, n)^2)/(n+k)};
for(n=1, 8, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Feb 18 2019
(Magma) [[((n+k+n*k)*Binomial(2*n+2*k, 2*n) - 2*n*k*Binomial(n+k, n)^2)/(n+k): k in [1..n]]: n in [1..8]]; // G. C. Greubel, Feb 18 2019
CROSSREFS
Columns T(m, 1) = A001844(m), T(m, 2) = A093119(m). Diagonal T(n, n) = A093120(n).
Sums of T(m,n) with fixed sum m+n (including entries with n > m and the trivial ones: T(0,x)=T(y,0)=1), are A005436. - Günter Rote, Feb 12 2019
Sequence in context: A149575 A156101 A372799 * A359690 A087506 A068487
KEYWORD
nonn,tabl,easy,walk
AUTHOR
Ralf Stephan, Mar 21 2004
STATUS
approved