Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #69 May 11 2024 09:37:01
%S 5,13,68,25,222,1110,41,555,3951,19010,61,1171,11263,70438,329126,85,
%T 2198,27468,216618,1245986,5693968,113,3788,59676,579330,4022546,
%U 21832492,98074332,145,6117,118605,1389927,11462495,72887139,379145115,1680306750
%N Triangle T read by rows: T(m,n) = number of convex polyominoes with an m+1 X n+1 minimal bounding rectangle, m > 0, n <= m.
%H Michael De Vlieger, <a href="/A093118/b093118.txt">Table of n, a(n) for n = 1..11325</a> (rows 1 <= n <= 150, flattened).
%H Mireille Bousquet-Mélou, <a href="https://doi.org/10.1088/0305-4470/25/7/032">Convex polyominoes and algebraic languages</a>, Journal of Physics A25 (1992), 1935-1944.
%H Kevin Buchin, Man-Kwun Chiu, Stefan Felsner, Günter Rote, and André Schulz, <a href="https://arxiv.org/abs/1903.01095">The Number of Convex Polyominoes with Given Height and Width</a>, arXiv:1903.01095 [math.CO], 2019.
%H Ira Gessel, <a href="http://www.labmath.uqam.ca/~annales/volumes/24-1/PDF/063-066.pdf">On the number of convex polyominoes</a>, Annales des Sciences Mathématiques du Québec, 24 (2000), 63-66.
%H V. J. W. Guo and J. Zeng, <a href="https://arxiv.org/abs/math/0403262">The number of convex polyominoes and the generating function of Jacobi polynomials</a>, arXiv:math/0403262 [math.CO], 2004.
%H K. Y. Lin and S. J. Chang, <a href="https://doi.org/10.1088/0305-4470/21/11/020">Rigorous results for the number of convex polygons on the square and honeycomb lattices</a>, Journal of Physics A21 (1988), 2635-2642.
%F T(m,n) = ((m+n+m*n)*C(2*m+2*n, 2*m) - 2*m*n*C(m+n, m)^2)/(m+n), for m + n > 0.
%F T(m,n) = C(2*m+2*n,2*m) + ((2*m+2*n-1)/2)*C(2*m+2*n-2,2*m-1) - 2*(m+n-1) *C(m+n,m)*C(m+n-2,m-1), for m >= 0, n >= 0. - _Günter Rote_, Feb 12 2019
%e Triangle begins:
%e 5,
%e 13, 68,
%e 25, 222, 1110,
%e 41, 555, 3951, 19010,
%e 61, 1171, 11263, 70438, 329126,
%e 85, 2198, 27468, 216618, 1245986, 5693968,
%e ...
%e This is the lower half of an infinite square table that is symmetric at the main diagonal (T(m,n)=T(n,m)).
%e From _Günter Rote_, Feb 12 2019: (Start)
%e For m=2 and n=1, the T(2,1)=13 polyominoes in a 3 X 2 rectangle are the five polyominoes
%e .
%e +---+---+---+ +---+ +---+---+
%e | | | | | | | | |
%e +---+---+---+ +---+---+---+ +---+---+---+
%e | | | | | | | | | | |
%e +---+---+---+ +---+---+---+ +---+---+
%e .
%e +---+ +---+---+
%e | | | | |
%e +---+---+---+ +---+---+---+
%e | | | | | | | |
%e +---+---+---+ +---+---+---+
%e .
%e plus all their different horizontal and vertical reflections (1 + 2 + 2 + 4 + 4 = 13 polyominoes in total). (End)
%p T:= (m, n)-> (m+n+m*n)/(m+n)*binomial(2*m+2*n, 2*m)
%p -2*m*n/(m+n)*binomial(m+n, m)^2:
%p seq(lprint(seq(T(m, n), n=1..m)), m=1..10); # _Alois P. Heinz_, Feb 24 2019
%t T[m_, n_] := (m+n+m n)/(m+n) Binomial[2m + 2n, 2m] - 2 m n/(m+n) Binomial[ m+n, m]^2;
%t Table[T[m, n], {m, 1, 8}, {n, 1, m}] // Flatten (* _Jean-François Alcover_, Aug 17 2018 *)
%o (Sage)
%o def T(m,n):
%o w, h = m+1, n+1 # width and height
%o p = w+h # half the perimeter
%o return ( binomial(2*p-4, 2*w-2) + binomial(2*p-6, 2*w-3)*(p-5/2) - 2*(p-3)*binomial(p-2, w-1)*binomial(p-4, w-2) ) # _Günter Rote_, Feb 13 2019
%o (PARI) {T(n,k) = ((n+k+n*k)*binomial(2*n+2*k, 2*n) - 2*n*k*binomial(n+k, n)^2)/(n+k)};
%o for(n=1,8, for(k=1,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Feb 18 2019
%o (Magma) [[((n+k+n*k)*Binomial(2*n+2*k, 2*n) - 2*n*k*Binomial(n+k, n)^2)/(n+k): k in [1..n]]: n in [1..8]]; // _G. C. Greubel_, Feb 18 2019
%Y Columns T(m, 1) = A001844(m), T(m, 2) = A093119(m). Diagonal T(n, n) = A093120(n).
%Y Sums of T(m,n) with fixed sum m+n (including entries with n > m and the trivial ones: T(0,x)=T(y,0)=1), are A005436. - _Günter Rote_, Feb 12 2019
%K nonn,tabl,easy,walk
%O 1,1
%A _Ralf Stephan_, Mar 21 2004