OFFSET
1,2
COMMENTS
Compare to l.g.f. Sum_{m>=1} (1 + x)^m * x^m/m of the Fibonacci sequence.
FORMULA
L.g.f.: A(x) = log(G(x)) where G(x) is the g.f. of A156100.
a(n) = n*Sum_{k=0..floor(n/2)} C(n-k,k)*2^(k(n-k))/(n-k). - Paul D. Hanna, Apr 10 2009
EXAMPLE
G.f.: A(x) = x + 5*x^2/2 + 13*x^3/3 + 65*x^4/4 + 401*x^5/5 + ...
A(x) = (1 + 2*x)*x + (1 + 2^2*x)^2*x^2/2 + (1 + 2^3*x)^3*x^3/3 + ...
exp(A(x)) = 1 + x + 3*x^2 + 7*x^3 + 25*x^4 + 113*x^5 + 741*x^6 + ...
MATHEMATICA
Table[n*Sum[Binomial[n-k, k]*2^(k(n-k))/(n-k), {k, 0, Floor[n/2]}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 06 2014 *)
PROG
(PARI) {a(n)=n*polcoeff(sum(m=1, n+1, (1+2^m*x)^m*x^m/m)+x*O(x^n), n)}
(PARI) {a(n)=n*sum(k=0, n\2, binomial(n-k, k)*2^(k*(n-k))/(n-k))} \\ Paul D. Hanna, Apr 10 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2009
EXTENSIONS
Offset corrected by Vaclav Kotesovec, Mar 06 2014
STATUS
approved