login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156101
L.g.f.: A(x) = Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} (1 + 2^n*x)^n*x^n/n .
1
1, 5, 13, 65, 401, 3521, 43457, 738305, 17746177, 593695745, 27878501377, 1840450134017, 169904883945473, 22139372291866625, 4036405254299041793, 1038968242677362458625, 375102612647535161966593
OFFSET
1,2
COMMENTS
Compare to l.g.f. Sum_{m>=1} (1 + x)^m * x^m/m of the Fibonacci sequence.
FORMULA
L.g.f.: A(x) = log(G(x)) where G(x) is the g.f. of A156100.
a(n) = n*Sum_{k=0..floor(n/2)} C(n-k,k)*2^(k(n-k))/(n-k). - Paul D. Hanna, Apr 10 2009
EXAMPLE
G.f.: A(x) = x + 5*x^2/2 + 13*x^3/3 + 65*x^4/4 + 401*x^5/5 + ...
A(x) = (1 + 2*x)*x + (1 + 2^2*x)^2*x^2/2 + (1 + 2^3*x)^3*x^3/3 + ...
exp(A(x)) = 1 + x + 3*x^2 + 7*x^3 + 25*x^4 + 113*x^5 + 741*x^6 + ...
MATHEMATICA
Table[n*Sum[Binomial[n-k, k]*2^(k(n-k))/(n-k), {k, 0, Floor[n/2]}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 06 2014 *)
PROG
(PARI) {a(n)=n*polcoeff(sum(m=1, n+1, (1+2^m*x)^m*x^m/m)+x*O(x^n), n)}
(PARI) {a(n)=n*sum(k=0, n\2, binomial(n-k, k)*2^(k*(n-k))/(n-k))} \\ Paul D. Hanna, Apr 10 2009
CROSSREFS
Cf. A156100.
Sequence in context: A272069 A018678 A149575 * A372799 A093118 A359690
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2009
EXTENSIONS
Offset corrected by Vaclav Kotesovec, Mar 06 2014
STATUS
approved