|
|
A118936
|
|
Sub-Kaprekar numbers: k such that k = |q - r| and k^2 = q*10^m + r, for some m >= 1, q >= 0, 0 <= r < 10^m, with k not a power of 10.
|
|
4
|
|
|
11, 78, 101, 287, 364, 1001, 1078, 1096, 1287, 1364, 10001, 11096, 18183, 100001, 118183, 336634, 1000001, 1336634, 2727274, 10000001, 12727274, 19138757, 23529412, 25974026, 97744361, 100000001, 120879122, 123529412, 140017878
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
EXAMPLE
|
287^2 = 82369 and |82 - 369| = 287, so 287 is a term.
1287^2 = 1656369 and |1656 - 369| = 1287, so 1287 is a term.
|
|
MATHEMATICA
|
f[n_] := !IntegerQ@Log[10, n] && Block[{p = 10^Range@Log[10, n^2]}, 0 == Times@@(n-Abs[Floor[n^2/p]-Mod[n^2, p]])]; Select[Range@400000, f]
|
|
CROSSREFS
|
|
|
KEYWORD
|
base,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|