login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A030054 a(n) = binomial(2n+1,n-4). 5
1, 11, 78, 455, 2380, 11628, 54264, 245157, 1081575, 4686825, 20030010, 84672315, 354817320, 1476337800, 6107086800, 25140840660, 103077446706, 421171648758, 1715884494940, 6973199770790, 28277527346376, 114456658306760, 462525733568080, 1866442158555975 (list; graph; refs; listen; history; text; internal format)
OFFSET
4,2
LINKS
FORMULA
G.f.: x^4*512/((1-sqrt(1-4*x))^9*sqrt(1-4*x))+(-1/x^5+7/x^4-15/x^3+10/x^2-1/x). - Vladimir Kruchinin, Aug 11 2015
From Robert Israel, Jun 11 2019: (Start)
(54 + 36*n)*a(n) + (-438 - 129*n)*a(n + 1) + (714 + 138*n)*a(n + 2) + (-432 - 63*n)*a(n + 3) + (110 + 13*n)*a(n + 4) + (-10 - n)*a(n + 5) = 0.
a(n) ~ 2^(2*n+1)/sqrt(n*Pi). (End)
From Amiram Eldar, Jan 24 2022: (Start)
Sum_{n>=4} 1/a(n) = 317/210 - 2*Pi/(9*sqrt(3)).
Sum_{n>=4} (-1)^n/a(n) = 2908*log(phi)/(5*sqrt(5)) - 8697/70, where phi is the golden ratio (A001622). (End)
G.f.: 2F1([11/2,5],[10],4*x). - Karol A. Penson, Apr 24 2024
MAPLE
seq(binomial(2*n+1, n-4), n=4..50); # Robert Israel, Jun 11 2019
MATHEMATICA
Table[Binomial[2n+1, n-4], {n, 4, 40}] (* Harvey P. Dale, Mar 31 2011 *)
PROG
(PARI) vector(30, n, m=n+4; binomial(2*m+1, m-4)) \\ Michel Marcus, Aug 11 2015
CROSSREFS
Diagonal 10 of triangle A100257.
Fifth unsigned column (s=4) of A113187. - Wolfdieter Lang, Oct 19 2012
Cf. A001622.
Sequence in context: A206529 A118936 A041224 * A225896 A239437 A140542
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 12 05:07 EDT 2024. Contains 375842 sequences. (Running on oeis4.)