|
|
A030054
|
|
a(n) = binomial(2n+1,n-4).
|
|
5
|
|
|
1, 11, 78, 455, 2380, 11628, 54264, 245157, 1081575, 4686825, 20030010, 84672315, 354817320, 1476337800, 6107086800, 25140840660, 103077446706, 421171648758, 1715884494940, 6973199770790, 28277527346376, 114456658306760, 462525733568080, 1866442158555975
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
4,2
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x^4*512/((1-sqrt(1-4*x))^9*sqrt(1-4*x))+(-1/x^5+7/x^4-15/x^3+10/x^2-1/x). - Vladimir Kruchinin, Aug 11 2015
(54 + 36*n)*a(n) + (-438 - 129*n)*a(n + 1) + (714 + 138*n)*a(n + 2) + (-432 - 63*n)*a(n + 3) + (110 + 13*n)*a(n + 4) + (-10 - n)*a(n + 5) = 0.
a(n) ~ 2^(2*n+1)/sqrt(n*Pi). (End)
Sum_{n>=4} 1/a(n) = 317/210 - 2*Pi/(9*sqrt(3)).
Sum_{n>=4} (-1)^n/a(n) = 2908*log(phi)/(5*sqrt(5)) - 8697/70, where phi is the golden ratio (A001622). (End)
|
|
MAPLE
|
|
|
MATHEMATICA
|
Table[Binomial[2n+1, n-4], {n, 4, 40}] (* Harvey P. Dale, Mar 31 2011 *)
|
|
PROG
|
(PARI) vector(30, n, m=n+4; binomial(2*m+1, m-4)) \\ Michel Marcus, Aug 11 2015
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|