login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030054
a(n) = binomial(2n+1,n-4).
6
1, 11, 78, 455, 2380, 11628, 54264, 245157, 1081575, 4686825, 20030010, 84672315, 354817320, 1476337800, 6107086800, 25140840660, 103077446706, 421171648758, 1715884494940, 6973199770790, 28277527346376, 114456658306760, 462525733568080, 1866442158555975
OFFSET
4,2
LINKS
FORMULA
G.f.: x^4*512/((1-sqrt(1-4*x))^9*sqrt(1-4*x))+(-1/x^5+7/x^4-15/x^3+10/x^2-1/x). - Vladimir Kruchinin, Aug 11 2015
From Robert Israel, Jun 11 2019: (Start)
(54 + 36*n)*a(n) + (-438 - 129*n)*a(n + 1) + (714 + 138*n)*a(n + 2) + (-432 - 63*n)*a(n + 3) + (110 + 13*n)*a(n + 4) + (-10 - n)*a(n + 5) = 0.
a(n) ~ 2^(2*n+1)/sqrt(n*Pi). (End)
From Amiram Eldar, Jan 24 2022: (Start)
Sum_{n>=4} 1/a(n) = 317/210 - 2*Pi/(9*sqrt(3)).
Sum_{n>=4} (-1)^n/a(n) = 2908*log(phi)/(5*sqrt(5)) - 8697/70, where phi is the golden ratio (A001622). (End)
G.f.: 2F1([11/2,5],[10],4*x). - Karol A. Penson, Apr 24 2024
From Peter Bala, Oct 13 2024: (Start)
a(n) = Integral_{x = 0..4} x^n * w(x) dx, where the weight function w(x) = 1/(2*Pi) * sqrt(x)*(x^4 - 9*x^3 + 27*x^2 - 30*x + 9)/sqrt((4 - x)).
G.f. x^4 * B(x) * C(x)^9, where B(x) = 1/sqrt(1 - 4*x) is the g.f. of the central binomial coefficients A000984 and C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)
D-finite with recurrence -(n+5)*(n-4)*a(n) +2*n*(2*n+1)*a(n-1)=0. - R. J. Mathar, Nov 22 2024
MAPLE
seq(binomial(2*n+1, n-4), n=4..50); # Robert Israel, Jun 11 2019
MATHEMATICA
Table[Binomial[2n+1, n-4], {n, 4, 40}] (* Harvey P. Dale, Mar 31 2011 *)
PROG
(PARI) vector(30, n, m=n+4; binomial(2*m+1, m-4)) \\ Michel Marcus, Aug 11 2015
CROSSREFS
Diagonal 10 of triangle A100257.
Fifth unsigned column (s=4) of A113187. - Wolfdieter Lang, Oct 19 2012
Cf. A001622.
Cf. binomial(2*n+m, n): A000984 (m = 0), A001700 (m = 1), A001791 (m = 2), A002054 (m = 3), A002694 (m = 4), A003516 (m = 5), A002696 (m = 6), A030053 - A030056, A004310 - A004318.
Sequence in context: A206529 A118936 A041224 * A225896 A239437 A140542
KEYWORD
nonn
STATUS
approved