login
A004318
Binomial coefficient C(2n,n-12).
7
1, 26, 378, 4060, 35960, 278256, 1947792, 12620256, 76904685, 445891810, 2481256778, 13340783196, 69668534468, 354860518600, 1768966344600, 8654327655120, 41648951840265, 197548686920970, 925029565741050, 4282083008118300, 19619725782651120, 89067326568860640
OFFSET
12,2
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Milan Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - N. J. A. Sloane, Feb 13 2013
Milan Janjic and B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014), Article 14.3.5.
FORMULA
E.g.f.: BesselI(12,2*x)*exp(2*x). - Ilya Gutkovskiy, Jun 28 2019
From Amiram Eldar, Aug 27 2022: (Start)
Sum_{n>=12} 1/a(n) = 2*Pi/(9*sqrt(3)) + 29719175/46558512.
Sum_{n>=12} (-1)^n/a(n) = 10920956*log(phi)/(5*sqrt(5)) - 109423385475847/232792560, where phi is the golden ratio (A001622). (End)
D-finite with recurrence -(n-12)*(n+12)*a(n) +2*n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jan 13 2025
MATHEMATICA
Table[Binomial[2*n, n-12], {n, 12, 30}] (* Amiram Eldar, Aug 27 2022 *)
PROG
(PARI) a(n)=binomial(2*n, n-12) \\ Charles R Greathouse IV, Oct 23 2023
CROSSREFS
Cf. A001622.
Sequence in context: A125461 A022654 A183187 * A159882 A036402 A036401
KEYWORD
nonn,easy
STATUS
approved