login
A004321
Binomial coefficient C(3n, n-3).
6
1, 12, 105, 816, 5985, 42504, 296010, 2035800, 13884156, 94143280, 635745396, 4280561376, 28760021745, 192928249296, 1292706174900, 8654327655120, 57902201338905, 387221678682300, 2588713818544245
OFFSET
3,2
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Alin Bostan, Frédéric Chyzak, and Vincent Pilaud, Refined product formulas for Tamari intervals, arXiv:2303.10986 [math.CO], 2023.
Daniel W. Stasiuk, An Enumeration Problem for Sequences of n-ary Trees Arising from Algebraic Operads, Master's Thesis, University of Saskatchewan-Saskatoon (2018).
FORMULA
a(n) = binomial(3n, n-3), n > 2. - Wesley Ivan Hurt, Feb 04 2014
From Ilya Gutkovskiy, Jan 31 2017: (Start)
E.g.f.: (1/6)*x^3*2F2(10/3,11/3; 5,11/2; 27*x/4).
a(n) ~ 3^(3*n+1/2)/(sqrt(Pi*n)*4^(n+2)). (End)
MAPLE
a:=n->sum(binomial(2*n-2, n+j)*binomial(n-1, n-j+1), j=0..n): seq(a(n), n=4..22); # Zerinvary Lajos, Jan 29 2007
MATHEMATICA
Table[Binomial[3n, n-3], {n, 3, 30}] (* Wesley Ivan Hurt, Feb 04 2014 *)
PROG
(PARI) {a(n) = binomial(3*n, n-3)}; \\ G. C. Greubel, Mar 21 2019
(Magma) [Binomial(3*n, n-3): n in [3..30]]; // G. C. Greubel, Mar 21 2019
(Sage) [binomial(3*n, n-3) for n in (3..30)] # G. C. Greubel, Mar 21 2019
(GAP) List([3..30], n-> Binomial(3*n, n-3)) # G. C. Greubel, Mar 21 2019
CROSSREFS
Cf. binomial(k*n, n-k): A000027 (k=1), A002694 (k=2), this sequence (k=3), A004334 (k=4), A004347 (k=5), A004361 (k=6), A004375 (k=7), A004389 (k=8), A281580 (k=9).
Sequence in context: A094530 A157024 A051815 * A016223 A027142 A090816
KEYWORD
nonn,easy
STATUS
approved