login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022654
Expansion of Product_{m>=1} (1+m*q^m)^26.
2
1, 26, 377, 4030, 35282, 267020, 1804855, 11133278, 63635364, 340845830, 1725623406, 8314033858, 38329313893, 169845329890, 726114272520, 3004404814658, 12063899757390, 47120073874016, 179388891204380, 666854279935844, 2424357631391397, 8631804737992852
OFFSET
0,2
LINKS
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, add(
26*(-d)^(n/d+1), d=numtheory[divisors](n)))
end:
a:= proc(n) option remember; `if`(n=0, 1,
add(b(j)*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jul 18 2018
MATHEMATICA
With[{nmax=50}, CoefficientList[Series[Product[(1+m*q^m)^26, {m, 1, nmax}], {q, 0, nmax}], q]] (* G. C. Greubel, Jul 18 2018 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1+n*q^n)^26)) \\ G. C. Greubel, Jul 18 2018
(Magma) Coefficients(&*[(1+m*x^m)^26:m in [1..40]])[1..50] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Jul 18 2018
CROSSREFS
Column k=26 of A297321.
Sequence in context: A364010 A004414 A125461 * A183187 A004318 A159882
KEYWORD
nonn
STATUS
approved