OFFSET
1,1
COMMENTS
a(n) = 2 if and only if n is odd. a(2^n) = 2^(n+1). - Emeric Deutsch, Aug 07 2005
a(n) > n if and only if n belongs to A005153, and then a(n) = sigma(n) + 1. - Michel Marcus, Oct 18 2013
The most frequent values are 2 (50%), 4 (16.7%), 8 (5.7%), 13 (3.2%), 16 (2.4%), 29 (1.3%), 32 (1%), 40, 43, 61, ... - M. F. Hasler, Apr 06 2014
The indices of records occur at the highly abundant numbers, excluding 3 and 10, if Jaycob Coleman's conjecture at A002093 that all these numbers are practical numbers (A005153) is true. - Amiram Eldar, Jun 13 2020
LINKS
David Wasserman and T. D. Noe, Table of n, a(n) for n = 1..10000 (first 1000 terms from David Wasserman)
EXAMPLE
a(10)=4 because 4 is the least positive integer that is not a sum of distinct divisors (namely 1,2,5 and 10) of 10.
MAPLE
with(combinat): with(numtheory): for n from 1 to 100 do div:=powerset(divisors(n)): b[n]:=sort({seq(sum(div[i][j], j=1..nops(div[i])), i=1..nops(div))}) od: for n from 1 to 100 do B[n]:={seq(k, k=0..1+sigma(n))} minus b[n] od: seq(B[n][1], n=1..100); # Emeric Deutsch, Aug 07 2005
MATHEMATICA
a[n_] := First[ Complement[ Range[ DivisorSigma[1, n] + 1], Total /@ Subsets[ Divisors[n]]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 02 2012 *)
PROG
(Haskell)
a030057 n = head $ filter ((== 0) . p (a027750_row n)) [1..] where
p _ 0 = 1
p [] _ = 0
p (k:ks) x = if x < k then 0 else p ks (x - k) + p ks x
-- Reinhard Zumkeller, Feb 27 2012
(Python)
from sympy import divisors
def A030057(n):
c = {0}
for d in divisors(n, generator=True):
c |= {a+d for a in c}
k = 1
while k in c:
k += 1
return k # Chai Wah Wu, Jul 05 2023
CROSSREFS
KEYWORD
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, May 05 2007
STATUS
approved