login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030057
Least number that is not a sum of distinct divisors of n.
12
2, 4, 2, 8, 2, 13, 2, 16, 2, 4, 2, 29, 2, 4, 2, 32, 2, 40, 2, 43, 2, 4, 2, 61, 2, 4, 2, 57, 2, 73, 2, 64, 2, 4, 2, 92, 2, 4, 2, 91, 2, 97, 2, 8, 2, 4, 2, 125, 2, 4, 2, 8, 2, 121, 2, 121, 2, 4, 2, 169, 2, 4, 2, 128, 2, 145, 2, 8, 2, 4, 2, 196, 2, 4, 2, 8, 2, 169, 2, 187, 2, 4, 2, 225, 2, 4, 2, 181
OFFSET
1,1
COMMENTS
a(n) = 2 if and only if n is odd. a(2^n) = 2^(n+1). - Emeric Deutsch, Aug 07 2005
a(n) > n if and only if n belongs to A005153, and then a(n) = sigma(n) + 1. - Michel Marcus, Oct 18 2013
The most frequent values are 2 (50%), 4 (16.7%), 8 (5.7%), 13 (3.2%), 16 (2.4%), 29 (1.3%), 32 (1%), 40, 43, 61, ... - M. F. Hasler, Apr 06 2014
The indices of records occur at the highly abundant numbers, excluding 3 and 10, if Jaycob Coleman's conjecture at A002093 that all these numbers are practical numbers (A005153) is true. - Amiram Eldar, Jun 13 2020
LINKS
David Wasserman and T. D. Noe, Table of n, a(n) for n = 1..10000 (first 1000 terms from David Wasserman)
EXAMPLE
a(10)=4 because 4 is the least positive integer that is not a sum of distinct divisors (namely 1,2,5 and 10) of 10.
MAPLE
with(combinat): with(numtheory): for n from 1 to 100 do div:=powerset(divisors(n)): b[n]:=sort({seq(sum(div[i][j], j=1..nops(div[i])), i=1..nops(div))}) od: for n from 1 to 100 do B[n]:={seq(k, k=0..1+sigma(n))} minus b[n] od: seq(B[n][1], n=1..100); # Emeric Deutsch, Aug 07 2005
MATHEMATICA
a[n_] := First[ Complement[ Range[ DivisorSigma[1, n] + 1], Total /@ Subsets[ Divisors[n]]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 02 2012 *)
PROG
(Haskell)
a030057 n = head $ filter ((== 0) . p (a027750_row n)) [1..] where
p _ 0 = 1
p [] _ = 0
p (k:ks) x = if x < k then 0 else p ks (x - k) + p ks x
-- Reinhard Zumkeller, Feb 27 2012
(Python)
from sympy import divisors
def A030057(n):
c = {0}
for d in divisors(n, generator=True):
c |= {a+d for a in c}
k = 1
while k in c:
k += 1
return k # Chai Wah Wu, Jul 05 2023
CROSSREFS
Distinct elements form A030058.
Cf. A027750.
Sequence in context: A059866 A278262 A093895 * A286596 A134066 A090988
KEYWORD
nonn,nice,look
EXTENSIONS
Edited by N. J. A. Sloane, May 05 2007
STATUS
approved