Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #62 Aug 22 2024 03:57:45
%S 2,4,2,8,2,13,2,16,2,4,2,29,2,4,2,32,2,40,2,43,2,4,2,61,2,4,2,57,2,73,
%T 2,64,2,4,2,92,2,4,2,91,2,97,2,8,2,4,2,125,2,4,2,8,2,121,2,121,2,4,2,
%U 169,2,4,2,128,2,145,2,8,2,4,2,196,2,4,2,8,2,169,2,187,2,4,2,225,2,4,2,181
%N Least number that is not a sum of distinct divisors of n.
%C a(n) = 2 if and only if n is odd. a(2^n) = 2^(n+1). - _Emeric Deutsch_, Aug 07 2005
%C a(n) > n if and only if n belongs to A005153, and then a(n) = sigma(n) + 1. - _Michel Marcus_, Oct 18 2013
%C The most frequent values are 2 (50%), 4 (16.7%), 8 (5.7%), 13 (3.2%), 16 (2.4%), 29 (1.3%), 32 (1%), 40, 43, 61, ... - _M. F. Hasler_, Apr 06 2014
%C The indices of records occur at the highly abundant numbers, excluding 3 and 10, if _Jaycob Coleman_'s conjecture at A002093 that all these numbers are practical numbers (A005153) is true. - _Amiram Eldar_, Jun 13 2020
%H David Wasserman and T. D. Noe, <a href="/A030057/b030057.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from David Wasserman)
%e a(10)=4 because 4 is the least positive integer that is not a sum of distinct divisors (namely 1,2,5 and 10) of 10.
%p with(combinat): with(numtheory): for n from 1 to 100 do div:=powerset(divisors(n)): b[n]:=sort({seq(sum(div[i][j],j=1..nops(div[i])),i=1..nops(div))}) od: for n from 1 to 100 do B[n]:={seq(k,k=0..1+sigma(n))} minus b[n] od: seq(B[n][1],n=1..100); # _Emeric Deutsch_, Aug 07 2005
%t a[n_] := First[ Complement[ Range[ DivisorSigma[1, n] + 1], Total /@ Subsets[ Divisors[n]]]]; Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Jan 02 2012 *)
%o (Haskell)
%o a030057 n = head $ filter ((== 0) . p (a027750_row n)) [1..] where
%o p _ 0 = 1
%o p [] _ = 0
%o p (k:ks) x = if x < k then 0 else p ks (x - k) + p ks x
%o -- _Reinhard Zumkeller_, Feb 27 2012
%o (Python)
%o from sympy import divisors
%o def A030057(n):
%o c = {0}
%o for d in divisors(n,generator=True):
%o c |= {a+d for a in c}
%o k = 1
%o while k in c:
%o k += 1
%o return k # _Chai Wah Wu_, Jul 05 2023
%Y Cf. A002093, A005153, A093896, A119347.
%Y Distinct elements form A030058.
%Y Cf. A027750.
%K nonn,nice,look
%O 1,1
%A _David W. Wilson_
%E Edited by _N. J. A. Sloane_, May 05 2007