Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Jun 04 2018 11:15:30
%S 0,-7,31,-86,182,-333,549,-844,1228,-1715,2315,-3042,3906,-4921,6097,
%T -7448,8984,-10719,12663,-14830,17230,-19877,22781,-25956,29412,
%U -33163,37219,-41594,46298,-51345,56745,-62512,68656,-75191,82127,-89478,97254,-105469,114133,-123260,132860
%N Numbers k such that 4*k + 1 is a perfect cube, sorted by absolute values.
%H Colin Barker, <a href="/A305290/b305290.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (-3,-2,2,3,1).
%F G.f.: x^2*(-7 + 10*x - 7*x^2)/((1 - x)*(1 + x)^4).
%F a(n) = -3*a(n-1) - 2*a(n-2) + 2*a(n-3) + 3*a(n-4) + a(n-5).
%F a(n) = (-1 - A016755(n-1)*(-1)^n)/4.
%F a(n) + a(-n) = (-1)^n*2^((1-(-1)^n)/2).
%F (n - 2)*(4*n^2 - 16*n + 19)*a(n) + (12*n^2 - 36*n + 31)*a(n-1) - (n - 1)*(4*n^2 - 8*n + 7)*a(n-2) = 0.
%F From _Colin Barker_, May 30 2018: (Start)
%F a(n) = n*(4*n^2 + 6*n + 3)/2 for n even.
%F a(n) = -(n + 1)*(4*n^2 + 2*n + 1)/2 for n odd.
%F (End)
%p seq(coeff(series(x^2*(-7+10*x-7*x^2)/((1-x)*(1+x)^4), x,50),x,n),n=1..45); # _Muniru A Asiru_, May 31 2018
%t LinearRecurrence[{-3, -2, 2, 3, 1}, {0, -7, 31, -86, 182}, 45] (* _Jean-François Alcover_, Jun 04 2018 *)
%o (PARI) concat(0, Vec(-x^2*(7 - 10*x + 7*x^2) / ((1 - x)*(1 + x)^4) + O(x^40))) \\ _Colin Barker_, Jun 04 2018
%Y Cf. A016755.
%Y Cf. A000290: k such that 4*k is a square.
%Y Cf. A002378: k such that 4*k+1 is a square.
%Y Cf. A033431: k such that 4*k is a nonnegative cube.
%Y Cf. A305291: k such that 4*k+3 is a cube.
%Y Cf. A141046: k such that 4*k is a fourth power.
%Y Cf. 4*A219086: k such that 4*k+1 is a fourth power.
%K sign,easy
%O 1,2
%A _Bruno Berselli_, May 29 2018