login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of zero-sum -n..n arrays of 5 elements with adjacent element differences also in -n..n
1

%I #7 Mar 31 2012 12:36:47

%S 15,107,397,1077,2385,4643,8211,13533,21091,31461,45241,63135,85861,

%T 114251,149145,191501,242277,302561,373433,456105,551777,661793,

%U 787469,930277,1091655,1273201,1476475,1703201,1955057,2233899,2541525,2879915

%N Number of zero-sum -n..n arrays of 5 elements with adjacent element differences also in -n..n

%C Row 5 of A202252

%H R. H. Hardin, <a href="/A202255/b202255.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = a(n-1) +a(n-2) -a(n-5) -a(n-6) -a(n-7) +a(n-8) +a(n-9) +a(n-10) -a(n-13) -a(n-14) +a(n-15).

%F Empirical: G.f. -x*(15 +92*x +275*x^2 +573*x^3 +911*x^4 +1196*x^5 +1305*x^6 +1198*x^7 +913*x^8 +574*x^9 +275*x^10 +91*x^11 +13*x^12 +x^14) / ( (1+x+x^2) *(x^4+x^3+x^2+x+1) *(x^2+1) *(1+x)^2 *(x-1)^5 ). - R. J. Mathar, Dec 15 2011

%e Some solutions for n=10

%e .-3....5....0...-6....3....4....4...-6....1....7....4...-5...-2....4...-4...-3

%e .-3...-3...-9...-5...10....4....3...-4....5....0....5....1....4...-3....3....1

%e .-7....4....0....0....1...-1...-4....4...-2...-2....3....5....5....5....5....1

%e ..3...-3....7...10...-5...-7...-6...-1...-3...-5...-3...-3...-1....1....3....1

%e .10...-3....2....1...-9....0....3....7...-1....0...-9....2...-6...-7...-7....0

%K nonn

%O 1,1

%A _R. H. Hardin_ Dec 14 2011