login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128411
Coefficient array for orthogonal polynomials defined by C(2n,n).
2
1, -2, 1, 4, -8, 2, -8, 36, -24, 4, 16, -128, 160, -64, 8, -32, 400, -800, 560, -160, 16, 64, -1152, 3360, -3584, 1728, -384, 32, -128, 3136, -12544, 18816, -13440, 4928, -896, 64, 256, -8192, 43008, -86016, 84480, -45056, 13312
OFFSET
0,2
COMMENTS
Define {p(n,x)} to be the family of orthogonal polynomials on [0,4] for the weight function (1/pi)*1/sqrt(x(4-x)) which defines C(2n,n). We have p(n,x)=(2x-4)*p(n-1,x)-4*p(n-2,x), with p(0,x)=1, p(1,x)=-2+x. A scaled version of this triangle is given by A128412.
FORMULA
Column k has g.f. if(k=0,1/(1+2x),(1-2x)*((2^(k-1)+0^k/2)*x^k/(1+2x)^(2k+1))).
T(n,k)=(C(n+k,n-k)(-1)^(n-k)-C(n+k-1,n-k-1)(-1)^(n-k-1))*(2^(n-1)+0^n/2); T(n,k)=A110162(n,k)*(2^(n-1)+0^n/2); - Paul Barry, Mar 22 2007
EXAMPLE
Triangle begins
1,
-2, 1,
4, -8, 2,
-8, 36, -24, 4,
16, -128, 160, -64, 8,
-32, 400, -800, 560, -160, 16,
64, -1152, 3360, -3584, 1728, -384, 32
CROSSREFS
Sequence in context: A275364 A160323 A340469 * A216046 A164614 A254102
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Mar 02 2007
STATUS
approved