OFFSET
0,2
COMMENTS
Define {p(n,x)} to be the family of orthogonal polynomials on [0,4] for the weight function (1/pi)*1/sqrt(x(4-x)) which defines C(2n,n). We have p(n,x)=(2x-4)*p(n-1,x)-4*p(n-2,x), with p(0,x)=1, p(1,x)=-2+x. A scaled version of this triangle is given by A128412.
FORMULA
Column k has g.f. if(k=0,1/(1+2x),(1-2x)*((2^(k-1)+0^k/2)*x^k/(1+2x)^(2k+1))).
T(n,k)=(C(n+k,n-k)(-1)^(n-k)-C(n+k-1,n-k-1)(-1)^(n-k-1))*(2^(n-1)+0^n/2); T(n,k)=A110162(n,k)*(2^(n-1)+0^n/2); - Paul Barry, Mar 22 2007
EXAMPLE
Triangle begins
1,
-2, 1,
4, -8, 2,
-8, 36, -24, 4,
16, -128, 160, -64, 8,
-32, 400, -800, 560, -160, 16,
64, -1152, 3360, -3584, 1728, -384, 32
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Mar 02 2007
STATUS
approved