OFFSET
1,2
COMMENTS
The family of constants h_n (h1 = 1.2148208055...) for generation of the complete sequence of primes with using of a recursive relation for h_n such that ceiling(h_n) = prime(n). The recursive relation h_n = ceiling(h_{n-1})*(h_{n-1}-ceiling(h_{n-1})+2) generates the complete sequence of prime numbers. Constants h_n are irrational for all n.
LINKS
I. A. Weinstein, Family of prime-representing constants: use of the ceiling function, arXiv:2101.00094 [math.GM], 2021.
FORMULA
h1 = Sum_{k>=1} (prime(k)-2)/Product_{i=1..k-1} prime(i).
EXAMPLE
h1 = 1.21482080552433374694513123422377095425915026021227...
h2 = 2.42964161104866749389026246844754190851830052042454...
h3 = 4.28892483314600248167078740534262572555490156127363...
etc.
MATHEMATICA
N[Sum[(Prime[k]-2)/Product[Prime[n], {n, 1, k-1}], {k, 1, 150}], 50]
PROG
(PARI) suminf(k=1, (prime(k)-2)/prod(i=1, k-1, prime(i))) \\ Michel Marcus, Jan 08 2021
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Ilya Weinstein, Jan 08 2021
STATUS
approved