login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340468
a(n) is the least prime of the form 2 + Product_{i=n..m} prime(i).
1
5, 7, 79, 13, 223, 19, 439, 130753887906569681111538991218568790437537693430279000532630035672131604633987039552816424896353327834998483765849409837393409377729040653460715050958787058270805333463, 31, 34826927179023475480751694965449235272424989980919
OFFSET
2,1
COMMENTS
If n is in A029707, a(n) = 2+prime(n).
If n is not in A029707 but prime(n) is in A051507, a(n) = 2+prime(n)*prime(n+1).
a(15) > 10^1000 if it exists.
LINKS
EXAMPLE
a(2) = 2+3 = 5.
a(3) = 2+5 = 7.
a(4) = 2+7*11 = 79.
a(5) = 2+11 = 13.
a(6) = 2+13*17 = 223.
a(7) = 2+17 = 19.
a(8) = 2+19*23 = 439.
a(9) = 2+23*29*...*431.
MAPLE
f:= proc(n) local i, t;
t:= 1;
for i from n do
t:= t*ithprime(i);
if isprime(t+2) then return t+2 fi;
od
end proc:
seq(f(n), n=2..14);
PROG
(Python)
from sympy import isprime, nextprime, prime
def a(n):
prodpnpm = pm = prime(n)
while not isprime(2+prodpnpm): pm = nextprime(pm); prodpnpm *= pm
return 2+prodpnpm
print([a(n) for n in range(2, 12)]) # Michael S. Branicky, Jan 08 2021
CROSSREFS
Sequence in context: A107140 A141746 A067198 * A351636 A062583 A196139
KEYWORD
nonn
AUTHOR
Robert Israel, Jan 08 2021
STATUS
approved