login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340465
Primes of the form prime(i)*prime(i+1)+prime(i+2)*prime(i+3)+...+prime(k-1)*prime(k).
2
41, 313, 2137, 6569, 7853, 10133, 10847, 12401, 13757, 14747, 17569, 17911, 24001, 24049, 27901, 31307, 38729, 43177, 43961, 44819, 51607, 69191, 81517, 88379, 104683, 107099, 130631, 137177, 138239, 145967, 154487, 154723, 158777, 162947, 175463, 184409, 192853, 196169, 232499, 243137, 261983
OFFSET
1,1
COMMENTS
A prime that has more than one expression of the given form is included only once. The first such prime is a(14353) = 6858604873 = 1979*1987+...+7109*7121 = 19949*19961+...+20231*20233.
LINKS
EXAMPLE
a(1) = 2*3+5*7 = 41.
a(2) = 3*5+7*11+13*17 = 313.
a(3) = 17*19+23*29+31*37 = 2137.
a(4) = 5*7+11*13+17*19+23*29+31*37+41*43+47*53 = 6569.
a(5) = 41*43+47*53+59*61 = 7853.
MAPLE
S1:= [0, seq(ithprime(2*i)*ithprime(2*i+1), i=1..100)]:
P1:= ListTools:-PartialSums(S1):
S2:= [0, seq(ithprime(2*i-1)*ithprime(2*i), i=1..100)]:
P2:= ListTools:-PartialSums(S2):
M:= 2*max(S1):
S:= select(t -> t < M and isprime(t), {seq(seq(P1[i]-P1[j], j=i mod 2 + 1 .. i-2, 2), i=1..101)} union {seq(seq(P2[i]-P2[j], j=i mod 2 + 1..i-2, 2), i=1..101)} union {seq(P2[i], i=1..101, 2)}):
sort(convert(S, list));
PROG
(Python)
from sympy import isprime, nextprime, prime
def sp2(lst):
ans = 0
for i in range(0, len(lst), 2): ans += lst[i]*lst[i+1]
return ans
def aupto(nn):
alst, i = [], 1
while True:
consec2i = [prime(j+1) for j in range(2*i)]; sp = sp2(consec2i)
if sp > nn: break
while sp <= nn:
if isprime(sp): alst.append(sp)
consec2i = consec2i[1:] + [nextprime(consec2i[-1])]; sp = sp2(consec2i)
i += 1
return sorted(alst)
print(aupto(261983)) # Michael S. Branicky, Jan 08 2021
CROSSREFS
Includes A340464.
Sequence in context: A175110 A096170 A277201 * A282867 A222990 A300775
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Jan 08 2021
STATUS
approved