The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A340465 Primes of the form prime(i)*prime(i+1)+prime(i+2)*prime(i+3)+...+prime(k-1)*prime(k). 2
 41, 313, 2137, 6569, 7853, 10133, 10847, 12401, 13757, 14747, 17569, 17911, 24001, 24049, 27901, 31307, 38729, 43177, 43961, 44819, 51607, 69191, 81517, 88379, 104683, 107099, 130631, 137177, 138239, 145967, 154487, 154723, 158777, 162947, 175463, 184409, 192853, 196169, 232499, 243137, 261983 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A prime that has more than one expression of the given form is included only once. The first such prime is a(14353) = 6858604873 = 1979*1987+...+7109*7121 = 19949*19961+...+20231*20233. LINKS Robert Israel, Table of n, a(n) for n = 1..10000 EXAMPLE a(1) = 2*3+5*7 = 41. a(2) = 3*5+7*11+13*17 = 313. a(3) = 17*19+23*29+31*37 = 2137. a(4) = 5*7+11*13+17*19+23*29+31*37+41*43+47*53 = 6569. a(5) = 41*43+47*53+59*61 = 7853. MAPLE S1:= [0, seq(ithprime(2*i)*ithprime(2*i+1), i=1..100)]: P1:= ListTools:-PartialSums(S1): S2:= [0, seq(ithprime(2*i-1)*ithprime(2*i), i=1..100)]: P2:= ListTools:-PartialSums(S2): M:= 2*max(S1): S:= select(t -> t < M and isprime(t), {seq(seq(P1[i]-P1[j], j=i mod 2 + 1 .. i-2, 2), i=1..101)} union {seq(seq(P2[i]-P2[j], j=i mod 2 + 1..i-2, 2), i=1..101)} union {seq(P2[i], i=1..101, 2)}): sort(convert(S, list)); PROG (Python) from sympy import isprime, nextprime, prime def sp2(lst): ans = 0 for i in range(0, len(lst), 2): ans += lst[i]*lst[i+1] return ans def aupto(nn): alst, i = [], 1 while True: consec2i = [prime(j+1) for j in range(2*i)]; sp = sp2(consec2i) if sp > nn: break while sp <= nn: if isprime(sp): alst.append(sp) consec2i = consec2i[1:] + [nextprime(consec2i[-1])]; sp = sp2(consec2i) i += 1 return sorted(alst) print(aupto(261983)) # Michael S. Branicky, Jan 08 2021 CROSSREFS Includes A340464. Sequence in context: A175110 A096170 A277201 * A282867 A222990 A300775 Adjacent sequences: A340462 A340463 A340464 * A340466 A340467 A340468 KEYWORD nonn AUTHOR J. M. Bergot and Robert Israel, Jan 08 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 31 21:40 EDT 2023. Contains 361673 sequences. (Running on oeis4.)