login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096170
Primes of the form (n^4 + 1)/2.
3
41, 313, 1201, 7321, 14281, 41761, 97241, 139921, 353641, 750313, 1156721, 5278001, 6922921, 8925313, 12705841, 14199121, 21523361, 56275441, 60775313, 81523681, 87450313, 100266961, 138461441, 273990641, 370600313, 407865361
OFFSET
1,1
COMMENTS
Note that n must be odd. Terms of primitive Pythagorean triples: (n^2, (n^4-1)/2, (n^4+1)/2).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
a(1)=41 because (3^4 + 1)/2 = 82/2 = 41 is prime.
MATHEMATICA
Select[(Range[200]^4+1)/2, PrimeQ] (* Harvey P. Dale, Mar 09 2013 *)
PROG
(Magma) [ a: n in [0..2500] | IsPrime(a) where a is ((n^4+1) div 2) ]; // Vincenzo Librandi, Apr 15 2011
(PARI) list(lim)=my(v=List(), t); forstep(n=3, sqrtnint(lim\1*2-1, 4), 2, if(isprime(t=(n^4+1)/2), listput(v, t))); Vec(v) \\ Charles R Greathouse IV, Feb 14 2017
CROSSREFS
Cf. A096169 (n^4+1)/2 is prime, A000068 n^4+1 is prime, A037896 primes of the form n^4+1, A096171 n^4+1 is an odd semiprime, A096172 largest prime factor of n^4+1.
Sequence in context: A364269 A002646 A175110 * A277201 A340465 A282867
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Jun 19 2004
EXTENSIONS
Name edited by Zak Seidov, Apr 14 2011
STATUS
approved