login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282867
Primes of the form x^2 + y^2 with x > y such that x^2 - y^2 is a square and x^4 + y^4 is a prime.
1
41, 313, 3593, 4481, 32633, 42961, 66361, 67073, 165233, 198593, 237161, 266921, 378953, 462073, 465041, 487073, 559001, 594161, 750353, 757633, 815401, 1157033, 1414081, 1416161, 1687393, 2439881, 2793481, 2866121, 2947561, 3344161, 3577913, 3759713, 4295281, 4617073, 4795481, 5654641
OFFSET
1,1
COMMENTS
Primes of the form (u^4 + v^4)/2 with u and v odd and (u^8 + 6*u^4*v^4 + v^8)/8 prime. - Robert Israel, Feb 24 2017
LINKS
FORMULA
a(n) == 1 (mod 8).
a(n) == 1 or 33 (mod 40).
EXAMPLE
For prime 41 = 5^2 + 4^2 is 5^2 - 4^2 = 3^2 and 5^4 + 4^4 = 881 is prime.
MAPLE
N:= 10^7: # to get all terms <= N Res:= {}:
for w from 1 to floor((2*N)^(1/4)) by 2 do
for u from 1 to min(w-1, floor((2*N-w^4)^(1/4))) by 2 do
p:= (u^4 + w^4)/2;
if isprime(p) and isprime((u^8 + 6*u^4*w^4 + w^8)/8) then
Res:= Res union {p}
fi;
od od:
sort(convert(Res, list)); # Robert Israel, Feb 24 2017
MATHEMATICA
Select[Total[#^2]&/@Select[Subsets[Range[3000], {2}], IntegerQ[Sqrt[#[[2]]^2-#[[1]]^2]] && PrimeQ[ Total[#^4]]&], PrimeQ]//Union (* Harvey P. Dale, Jul 23 2024 *)
CROSSREFS
Subsequence of A002646.
Sequence in context: A096170 A277201 A340465 * A222990 A300775 A232857
KEYWORD
nonn
AUTHOR
Thomas Ordowski and Altug Alkan, Feb 23 2017
STATUS
approved