login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282870
a(n) = floor( Li(n) - pi(n) ).
2
0, 0, 0, 0, 1, 0, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 4, 4, 3, 3, 4, 4, 4, 4, 5, 5, 4, 4, 4, 5, 4, 4, 3, 3, 4, 4
OFFSET
2,9
COMMENTS
Li(x) is the logarithmic integral of x.
pi(x) is the number of primes less than or equal to x, A000720(x).
"The Riemann hypothesis is an assertion about the size of the error term in the prime number theorem, namely, that pi(x) = li(x)+O(x^(1/2+epsilon))", see Nathanson, page 323.
REFERENCES
Melvyn B. Nathanson, Elementary Methods in Number Theory, Springer, 2000
FORMULA
a(n) = A047783(n) - A000720(n).
MAPLE
a:= n-> floor(evalf(Li(n)))-numtheory[pi](n):
seq(a(n), n=2..120); # Alois P. Heinz, Feb 23 2017
MATHEMATICA
iend = 100;
For[x = 1, x <= iend, x++,
a[x] = N[LogIntegral[x] - PrimePi[x]]]; t =
Table[Floor[a[i]], {i, 2, iend}]; Print[t]
Table[Floor[LogIntegral[n] - PrimePi[n]], {n, 2, 110}] (* G. C. Greubel, May 17 2019 *)
PROG
(PARI) vector(110, n, n++; floor(real(-eint1(-log(n))) - primepi(n)) ) \\ G. C. Greubel, May 17 2019
(Magma) [Floor(LogIntegral(n) - #PrimesUpTo(n)): n in [2..110]]; // G. C. Greubel, May 17 2019
(Sage) [floor(li(n) - prime_pi(n)) for n in (2..110)] # G. C. Greubel, May 17 2019
CROSSREFS
KEYWORD
sign
AUTHOR
David S. Newman, Feb 23 2017
STATUS
approved