Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jan 10 2021 22:11:04
%S 41,313,2137,6569,7853,10133,10847,12401,13757,14747,17569,17911,
%T 24001,24049,27901,31307,38729,43177,43961,44819,51607,69191,81517,
%U 88379,104683,107099,130631,137177,138239,145967,154487,154723,158777,162947,175463,184409,192853,196169,232499,243137,261983
%N Primes of the form prime(i)*prime(i+1)+prime(i+2)*prime(i+3)+...+prime(k-1)*prime(k).
%C A prime that has more than one expression of the given form is included only once. The first such prime is a(14353) = 6858604873 = 1979*1987+...+7109*7121 = 19949*19961+...+20231*20233.
%H Robert Israel, <a href="/A340465/b340465.txt">Table of n, a(n) for n = 1..10000</a>
%e a(1) = 2*3+5*7 = 41.
%e a(2) = 3*5+7*11+13*17 = 313.
%e a(3) = 17*19+23*29+31*37 = 2137.
%e a(4) = 5*7+11*13+17*19+23*29+31*37+41*43+47*53 = 6569.
%e a(5) = 41*43+47*53+59*61 = 7853.
%p S1:= [0,seq(ithprime(2*i)*ithprime(2*i+1),i=1..100)]:
%p P1:= ListTools:-PartialSums(S1):
%p S2:= [0,seq(ithprime(2*i-1)*ithprime(2*i),i=1..100)]:
%p P2:= ListTools:-PartialSums(S2):
%p M:= 2*max(S1):
%p S:= select(t -> t < M and isprime(t), {seq(seq(P1[i]-P1[j],j=i mod 2 + 1 .. i-2,2),i=1..101)} union {seq(seq(P2[i]-P2[j],j=i mod 2 + 1..i-2,2),i=1..101)} union {seq(P2[i],i=1..101,2)}):
%p sort(convert(S,list));
%o (Python)
%o from sympy import isprime, nextprime, prime
%o def sp2(lst):
%o ans = 0
%o for i in range(0, len(lst), 2): ans += lst[i]*lst[i+1]
%o return ans
%o def aupto(nn):
%o alst, i = [], 1
%o while True:
%o consec2i = [prime(j+1) for j in range(2*i)]; sp = sp2(consec2i)
%o if sp > nn: break
%o while sp <= nn:
%o if isprime(sp): alst.append(sp)
%o consec2i = consec2i[1:] + [nextprime(consec2i[-1])]; sp = sp2(consec2i)
%o i += 1
%o return sorted(alst)
%o print(aupto(261983)) # _Michael S. Branicky_, Jan 08 2021
%Y Includes A340464.
%K nonn
%O 1,1
%A _J. M. Bergot_ and _Robert Israel_, Jan 08 2021