login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340464
Primes of the form p*q+r*s+t*u, where p,q,r,s,t,u are consecutive primes.
3
313, 2137, 7853, 10847, 17911, 43961, 130631, 138239, 145967, 154723, 175463, 192853, 331871, 359377, 436481, 676253, 713807, 824437, 907969, 1037557, 2637959, 2683151, 3050543, 3228437, 3341369, 3676639, 3833723, 4196513, 4412081, 4793713, 4961497, 5614957, 5727791, 5976209, 8122097, 8201213
OFFSET
1,1
LINKS
FORMULA
a(n)=prime(m)*prime(m+1)+prime(m+2)*prime(m+3)+prime(m+4)*prime(m+5) where A340463(n)=prime(m).
EXAMPLE
a(3)=41*43+47*53+59*61=7853, where 41,43,47,53,59,61 are consecutive primes and 7853 is prime.
MAPLE
select(isprime, map(i -> ithprime(i)*ithprime(i+1)+ithprime(i+2)*ithprime(i+3)+ithprime(i+4)*ithprime(i+5), [$1..1000]));
PROG
(Python)
from sympy import nextprime, isprime
def aupto(nn):
alst, consec6 = [], [2, 3, 5, 7, 11, 13]
p, q, r, s, t, u = consec6; prod = p*q+r*s+t*u
while prod <= nn:
if isprime(prod): alst.append(prod)
consec6 = consec6[1:] + [nextprime(consec6[-1])]
p, q, r, s, t, u = consec6; prod = p*q+r*s+t*u
return alst
print(aupto(10**8)) # Michael S. Branicky, Jan 08 2021
CROSSREFS
Cf. A340463.
Sequence in context: A082436 A108845 A348170 * A272442 A200912 A123059
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Jan 08 2021
STATUS
approved