login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090018
a(n) = 6*a(n-1) + 3*a(n-2) for n > 2, a(0)=1, a(1)=6.
10
1, 6, 39, 252, 1629, 10530, 68067, 439992, 2844153, 18384894, 118841823, 768205620, 4965759189, 32099171994, 207492309531, 1341251373168, 8669985167601, 56043665125110, 362271946253463, 2341762672896108
OFFSET
0,2
COMMENTS
From Johannes W. Meijer, Aug 09 2010: (Start)
a(n) represents the number of n-move routes of a fairy chess piece starting in a given corner or side square on a 3 X 3 chessboard. This fairy chess piece behaves like a white queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen, see A180032. The central square leads to A180028. (End)
FORMULA
a(n) = (3+2*sqrt(3))^n*(sqrt(3)/4+1/2) + (1/2-sqrt(3)/4)*(3-2*sqrt(3))^n.
a(n) = (-i*sqrt(3))^n * ChebyshevU(n, isqrt(3)), i^2=-1.
From Johannes W. Meijer, Aug 09 2010: (Start)
G.f.: 1/(1 - 6*x - 3*x^2).
Lim_{k->infinity} a(n+k)/a(k) = A141041(n) + A090018(n-1)*sqrt(12) for n >= 1.
Lim_{n->infinity} A141041(n)/A090018(n-1) = sqrt(12).
(End)
a(n) = Sum_{k=0..n} A099089(n,k)*3^k. - Philippe Deléham, Nov 21 2011
MAPLE
a:= n-> (<<0|1>, <3|6>>^n. <<1, 6>>)[1, 1]:
seq(a(n), n=0..30);
MATHEMATICA
Join[{a=1, b=6}, Table[c=6*b+3*a; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
LinearRecurrence[{6, 3}, {1, 6}, 41] (* G. C. Greubel, Oct 10 2022 *)
PROG
(Sage) [lucas_number1(n, 6, -3) for n in range(1, 31)] # Zerinvary Lajos, Apr 24 2009
(Magma) [n le 2 select 6^(n-1) else 6*Self(n-1)+3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2011
(PARI) my(x='x+O('x^30)); Vec(1/(1-6*x-3*x^2)) \\ G. C. Greubel, Jan 24 2018
CROSSREFS
Sequences with g.f. of the form 1/(1 - 6*x - k*x^2): A106392 (k=-10), A027471 (k=-9), A006516 (k=-8), A081179 (k=-7), A030192 (k=-6), A003463 (k=-5), A084326 (k=-4), A138395 (k=-3), A154244 (k=-2), A001109 (k=-1), A000400 (k=0), A005668 (k=1), A135030 (k=2), this sequence (k=3), A135032 (k=4), A015551 (k=5), A057089 (k=6), A015552 (k=7), A189800 (k=8), A189801 (k=9), A190005 (k=10), A015553 (k=11).
Sequence in context: A037683 A145664 A305289 * A238809 A006256 A052392
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Nov 19 2003
EXTENSIONS
Typo in Mathematica program corrected by Vincenzo Librandi, Nov 15 2011
STATUS
approved