login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090020 Number of distinct lines through the origin in the n-dimensional lattice of side length 4. 12
0, 1, 13, 91, 529, 2851, 14833, 75811, 383809, 1932931, 9705553, 48648931, 243605089, 1219100611, 6098716273, 30503196451, 152544778369, 762810181891, 3814309582993, 19072323542371, 95363943807649, 476826695752771 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Equivalently, lattice points where the gcd of all the coordinates is 1.

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (11,-41,61,-30).

FORMULA

a(n) = 5^n - 3^n - 2^n + 1.

G.f.: -x*(11*x^2-2*x-1)/((x-1)*(2*x-1)*(3*x-1)*(5*x-1)). [Colin Barker, Sep 04 2012]

EXAMPLE

a(2) = 13 because in 2D the lines have slope 0, 1/4, 1/3, 1/2, 2/3, 3/4, 1, 4/3, 3/2, 2, 3, 4 and infinity.

MATHEMATICA

Table[5^n - 3^n - 2^n + 1, {n, 0, 25}]

LinearRecurrence[{11, -41, 61, -30}, {0, 1, 13, 91}, 30] (* Indranil Ghosh, Feb 21 2017 *)

PROG

(Python) def A090020(n): return 5**n-3**n-2**n+1 # Indranil Ghosh, Feb 21 2017

CROSSREFS

a(n) = T(n,4) from A090030. Cf. A000225, A001047, A060867, A090021, A090022, A090023, A090024 are for dimension n with side lengths 1, 2, 3, 5, 6, 7, 8 respectively. A049691, A090025, A090026, A090027, A090028, A090029 are for side length k in 2, 3, 4, 5, 6, 7 dimensions.

Sequence in context: A010965 A221144 A022578 * A092469 A300779 A275918

Adjacent sequences:  A090017 A090018 A090019 * A090021 A090022 A090023

KEYWORD

easy,nonn

AUTHOR

Joshua Zucker, Nov 19 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 22 12:49 EDT 2021. Contains 345380 sequences. (Running on oeis4.)