This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090030 Triangle read by rows: T(n,k) = number of distinct lines through the origin in the n-dimensional cubic lattice of side length k with one corner at the origin. 12
 0, 0, 0, 0, 1, 0, 0, 1, 3, 0, 0, 1, 5, 7, 0, 0, 1, 9, 19, 15, 0, 0, 1, 13, 49, 65, 31, 0, 0, 1, 21, 91, 225, 211, 63, 0, 0, 1, 25, 175, 529, 961, 665, 127, 0, 0, 1, 37, 253, 1185, 2851, 3969, 2059, 255, 0, 0, 1, 45, 415, 2065, 7471, 14833, 16129, 6305, 511, 0, 0, 1, 57, 571, 3745 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS Equivalently, number of lattice points where the GCD of all coordinates = 1. LINKS FORMULA With A(n, k) = A090225(n, k), T(n, k) =(k+1)^n - 1 - the sum for 0 < i < k of Floor[k/i-1]*A(n, i) T(n, k) = Sum(moebius(i)*((floor((n-k)/i)+1)^k-1), i=1..n-k). - Vladeta Jovovic, Dec 03 2004 EXAMPLE T(n,1) = 2^n-1 because there are 2^n-1 lattice points other than the corner, all of which make distinct lines. T(n,2) = 3^n - 2^n because if the given corner is the origin, all the points with coordinates in {0,1} make lines that are redundant with a point containing a coordinate 2. MATHEMATICA aux[n_, k_] := If[k==0, 0, (k+1)^n-k^n-Sum[aux[n, Divisors[k][[i]]], {i, 1, Length[Divisors[k]]-1}]]; lines[n_, k_] := (k+1)^n-Sum[Floor[k/i-1]*aux[n, i], {i, 1, Floor[k/2]}]-1; lines[n, k] CROSSREFS Cf. A000225, A001047, A060867, A090020, A090021, A090022, A090023, A090024 give T(n, k) for k = 1, 2, 3, 4, 5, 6, 7, 8, respectively. A049691, A090025, A090026, A090027, A090028, A090029 give T(n, k) for n=2, 3, 4, 5, 6, 7 respectively. A090225 counts only points with at least one coordinate = k. Sequence in context: A325846 A325735 A235794 * A293616 A211649 A202023 Adjacent sequences:  A090027 A090028 A090029 * A090031 A090032 A090033 KEYWORD nonn,tabl AUTHOR Joshua Zucker, Nov 24 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 18 07:22 EST 2019. Contains 329252 sequences. (Running on oeis4.)