login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090030 Triangle read by rows: T(n,k) = number of distinct lines through the origin in the n-dimensional cubic lattice of side length k with one corner at the origin. 12
0, 0, 0, 0, 1, 0, 0, 1, 3, 0, 0, 1, 5, 7, 0, 0, 1, 9, 19, 15, 0, 0, 1, 13, 49, 65, 31, 0, 0, 1, 21, 91, 225, 211, 63, 0, 0, 1, 25, 175, 529, 961, 665, 127, 0, 0, 1, 37, 253, 1185, 2851, 3969, 2059, 255, 0, 0, 1, 45, 415, 2065, 7471, 14833, 16129, 6305, 511, 0, 0, 1, 57, 571, 3745 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

Equivalently, number of lattice points where the GCD of all coordinates = 1.

LINKS

Table of n, a(n) for n=0..70.

FORMULA

With A(n, k) = A090225(n, k), T(n, k) =(k+1)^n - 1 - the sum for 0 < i < k of Floor[k/i-1]*A(n, i)

T(n, k) = Sum(moebius(i)*((floor((n-k)/i)+1)^k-1), i=1..n-k). - Vladeta Jovovic, Dec 03 2004

EXAMPLE

T(n,1) = 2^n-1 because there are 2^n-1 lattice points other than the corner, all of which make distinct lines. T(n,2) = 3^n - 2^n because if the given corner is the origin, all the points with coordinates in {0,1} make lines that are redundant with a point containing a coordinate 2.

MATHEMATICA

aux[n_, k_] := If[k==0, 0, (k+1)^n-k^n-Sum[aux[n, Divisors[k][[i]]], {i, 1, Length[Divisors[k]]-1}]]; lines[n_, k_] := (k+1)^n-Sum[Floor[k/i-1]*aux[n, i], {i, 1, Floor[k/2]}]-1; lines[n, k]

CROSSREFS

Cf. A000225, A001047, A060867, A090020, A090021, A090022, A090023, A090024 give T(n, k) for k = 1, 2, 3, 4, 5, 6, 7, 8, respectively. A049691, A090025, A090026, A090027, A090028, A090029 give T(n, k) for n=2, 3, 4, 5, 6, 7 respectively. A090225 counts only points with at least one coordinate = k.

Sequence in context: A325846 A325735 A235794 * A293616 A211649 A202023

Adjacent sequences:  A090027 A090028 A090029 * A090031 A090032 A090033

KEYWORD

nonn,tabl

AUTHOR

Joshua Zucker, Nov 24 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 07:22 EST 2019. Contains 329252 sequences. (Running on oeis4.)