login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090029
Number of distinct lines through the origin in 7-dimensional cube of side length n.
12
0, 127, 2059, 16129, 75811, 277495, 804973, 2078455, 4702531, 9905365, 19188793, 35533303, 61846723, 104511583, 168681913, 266042113, 405259513, 607140745, 883046011, 1269174145, 1780715833, 2472697501, 3366818491, 4548464341
OFFSET
0,2
COMMENTS
Equivalently, lattice points where the GCD of all coordinates = 1.
FORMULA
a(n) = A090030(7, n).
a(n) = (n+1)^7 - 1 - Sum_{j=2..n+1} a(floor(n/j)). - Chai Wah Wu, Mar 30 2021
EXAMPLE
a(2) = 2059 because the 2059 points with at least one coordinate=2 all make distinct lines and the remaining 127 points and the origin are on those lines.
MATHEMATICA
aux[n_, k_] := If[k == 0, 0, (k + 1)^n - k^n - Sum[aux[n, Divisors[k][[i]]], {i, 1, Length[Divisors[k]] - 1}]]; lines[n_, k_] := (k + 1)^n - Sum[Floor[k/i - 1]*aux[n, i], {i, 1, Floor[k/2]}] - 1; Table[lines[7, k], {k, 0, 40}]
PROG
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def A090029(n):
if n == 0:
return 0
c, j = 1, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*A090029(k1)
j, k1 = j2, n//j2
return (n+1)**7-c+127*(j-n-1) # Chai Wah Wu, Mar 30 2021
CROSSREFS
Cf. A000225, A001047, A060867, A090020, A090021, A090022, A090023, A090024 are for n dimensions with side length 1, 2, 3, 4, 5, 6, 7, 8, respectively. A049691, A090025, A090026, A090027, A090028, A090029 are this sequence for 2, 3, 4, 5, 6, 7 dimensions. A090030 is the table for n dimensions, side length k.
Sequence in context: A228263 A228222 A022523 * A152726 A069092 A024005
KEYWORD
nonn
AUTHOR
Joshua Zucker, Nov 25 2003
STATUS
approved