login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049691 a(n)=T(n,n), array T as in A049687. Also a(n)=T(2n,2n), array T given by A049639. 22
0, 3, 5, 9, 13, 21, 25, 37, 45, 57, 65, 85, 93, 117, 129, 145, 161, 193, 205, 241, 257, 281, 301, 345, 361, 401, 425, 461, 485, 541, 557, 617, 649, 689, 721, 769, 793, 865, 901, 949, 981, 1061, 1085, 1169, 1209, 1257, 1301, 1393, 1425, 1509, 1549 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) is related to the sequence b(n) = |{(x, y): gcd(x, y) = 1, 1<=x, y<=n}| (A018805) as follows: a(n) = b(n - 1) + 2 (for n > 1). - Shawn Westmoreland (westmore(AT)math.utexas.edu), Jun 11 2003

Comment from N. J. A. Sloane, Sep 08 2019 (Start)

The above comment can be rephrased as saying that a(n) is the cardinality of the subsequence F(B(2n),n) of the Farey series F(2n) that is extensively studied in Matseev (2017). See the definition on page 1.

For example, F(B(2),1), F(B(4),2), F(B(6),3), and F(B(8),4) are:

[0, 1/2, 1],

[0, 1/3, 1/2, 2/3, 1],

[0, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 1],

[0, 1/5, 1/4, 1/3, 2/5, 3/7, 1/2, 4/7, 3/5, 2/3, 3/4, 4/5, 1],

of cardinalities 3,5,9,13 respectively. See also A324796/A324797.(End)

REFERENCES

A. O. Matveev, Farey Fractions, De Gruyter, 2017.

LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..1000

FORMULA

a(n) = A206297(n+1) = 2 + A018805(n) for n > 0. - Andrew Howroyd, Sep 17 2017

MAPLE

Farey := proc(n) sort(convert(`union`({0}, {seq(seq(m/k, m=1..k), k=1..n)}), list)) end: # A006842/A006843

BF := proc(m) local a, i, h, k; global Farey; a:=[];

for i in Farey(2*m) do h:=numer(i); k:=denom(i);

if (h <= m) and (k-m <= h) then a:=[op(a), i]; fi; od: a; end;

[seq(nops(BF(m), m=1..20)]; # this sequence - N. J. A. Sloane, Sep 08 2019

MATHEMATICA

a[0] = 0; a[n_] := 2 + Sum[Quotient[n, g]^2*MoebiusMu[g], {g, 1, n}]; Table[a[n], {n, 0, 50}] (* Jean-Fran├žois Alcover, Oct 07 2017, translated from PARI *)

PROG

(PARI) a(n) = if(n>0, 2, 0) + sum(g=1, n, (n\g)^2 * moebius(g)); \\ Andrew Howroyd, Sep 17 2017

CROSSREFS

Cf. A018805, A049687, A324796, A324797.

A206297 is an essentially identical sequence.

Sequence in context: A249424 A076274 A058989 * A206297 A320596 A227565

Adjacent sequences:  A049688 A049689 A049690 * A049692 A049693 A049694

KEYWORD

nonn

AUTHOR

Clark Kimberling

EXTENSIONS

Terms a(41) and beyond from Andrew Howroyd, Sep 17 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 14:35 EST 2019. Contains 329058 sequences. (Running on oeis4.)