OFFSET
1,7
COMMENTS
B(n) is denoted by F(B(2n),n) in Matveev (2017) - see definition on page 1. B(n) consists of the terms h/k of the Farey series F_{2n} such that k-n <= h <= n.
A049691 gives the row lengths.
REFERENCES
A. O. Matveev, Farey Sequences, De Gruyter, 2017.
LINKS
EXAMPLE
The first few sequences B(1), B(2), B(3), B(4) are:
[0, 1/2, 1],
[0, 1/3, 1/2, 2/3, 1],
[0, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 1],
[0, 1/5, 1/4, 1/3, 2/5, 3/7, 1/2, 4/7, 3/5, 2/3, 3/4, 4/5, 1], [0, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 4/9, 1/2, 5/9, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 1],
...
MAPLE
Farey := proc(n) sort(convert(`union`({0}, {seq(seq(m/k, m=1..k), k=1..n)}), list)) end:
B := proc(m) local a, i, h, k; global Farey; a:=[];
for i in Farey(2*m) do
h:=numer(i); k:=denom(i);
if (h <= m) and (k-m <= h) then a:=[op(a), i]; fi; od: a; end;
CROSSREFS
KEYWORD
nonn,frac,tabf
AUTHOR
N. J. A. Sloane, Sep 10 2019
STATUS
approved