|
|
A324795
|
|
a(n) = 2*p(n)*p(n+2)-p(n+1)^2 where p(k) = k-th prime.
|
|
2
|
|
|
11, 17, 61, 61, 205, 205, 421, 573, 585, 1185, 1173, 1501, 2005, 2349, 2737, 2985, 4185, 4173, 4741, 5889, 5877, 7173, 8181, 8569, 9781, 11005, 11005, 12301, 14917, 13477, 17637, 17649, 21505, 19777, 23985, 24577, 25869, 28509, 29857, 30585, 35617
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Theorem: a(n)>0. Proof: Use p(n+1) <= 2 p(n)^2 for n>4. (See Mitrinovic). QED
|
|
REFERENCES
|
D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VII.18(b).
|
|
LINKS
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|