OFFSET
1,8
COMMENTS
Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences.
This sequence uses the characteristic polynomial defined as det(A - x I), rather than det(x I - A), so the last term in row n is (-1)^n. - Robert Israel, Feb 10 2023
REFERENCES
(For references regarding interlacing roots, see A202605.)
LINKS
Robert Israel, Table of n, a(n) for n = 1..10010 (rows 1 to 140, flattened)
FORMULA
(Empirical) T(m,k) = [x^m y^(k-1)] y*(1-x*y)*(1-x+x^3*y^2)/(1+y^2-2*x^2*y^2+x^4*y^4). - Robert Israel, Feb 10 2023
EXAMPLE
Top of the array:
1, -1;
0, -1, 1;
-1, 1, 2, -1;
0, 1, -1, -2, 1;
MAPLE
for n from 1 to 20 do
P:= (-1)^n * LinearAlgebra:-CharacteristicPolynomial(Matrix(n, n, (i, j) -> max(i, j) mod 2), x):
print(seq(coeff(P, x, i), i=0..n));
od: # Robert Israel, Feb 10 2023
MATHEMATICA
f[i_, j_] := If[Mod[Max[i, j], 2] == 1, 1, 0]
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[8]] (* 8x8 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 15}, {i, 1, n}]] (* A204171 *)
p[n_] := CharacteristicPolynomial[m[n], x];
c[n_] := CoefficientList[p[n], x]
TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%] (* A204172 *)
TableForm[Table[c[n], {n, 1, 10}]]
CROSSREFS
KEYWORD
tabf,sign
AUTHOR
Clark Kimberling, Jan 12 2012
STATUS
approved