login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A293461 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. Product_{i>0} (1 + Sum_{j=1..k} j*x^(j*(2*i-1))). 2
1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 2, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 4, 1, 1, 0, 1, 1, 2, 4, 1, 3, 1, 0, 1, 1, 2, 4, 5, 3, 3, 1, 0, 1, 1, 2, 4, 5, 3, 6, 5, 2, 0, 1, 1, 2, 4, 5, 8, 6, 5, 6, 2, 0, 1, 1, 2, 4, 5, 8, 6, 9, 9, 4, 2, 0, 1, 1, 2, 4, 5, 8, 12, 9, 9, 13 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,13

LINKS

Seiichi Manyama, Antidiagonals n = 0..139, flattened

EXAMPLE

Square array begins:

   1, 1, 1, 1, 1, ...

   0, 1, 1, 1, 1, ...

   0, 0, 2, 2, 2, ...

   0, 1, 1, 4, 4, ...

   0, 1, 1, 1, 5, ...

   0, 1, 3, 3, 3, ...

MATHEMATICA

max = 12; A[n_, k_] := SeriesCoefficient[Product[(x*(-(k*x^((2*i - 1)*(k + 1) + 1)) - x^((2*i - 1)*(k + 1) + 1) + k*x^((2*i - 1)*(k + 1) + 2*i) + x^(2*i)))/(x^(2*i) - x)^2 + 1, {i, 1, max}], {x, 0, n}]; Flatten[ Table[ A[n - k, k], {n, 0, max}, {k, n, 0, -1}]] (* Jean-Fran├žois Alcover, Oct 10 2017 *)

CROSSREFS

Columns k=0..3 give A000007, A000700, A293304, A293463.

Rows n=0..1 give A000012, A057427.

Main diagonal gives A102186.

Cf. A290216.

Sequence in context: A037897 A190248 A054070 * A255482 A204172 A126304

Adjacent sequences:  A293458 A293459 A293460 * A293462 A293463 A293464

KEYWORD

nonn,tabl

AUTHOR

Seiichi Manyama, Oct 09 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 28 00:31 EST 2020. Contains 331310 sequences. (Running on oeis4.)