login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102186
The PDO(n) function (Partitions with Designated summands in which all parts are Odd): the sum of products of multiplicities of parts in all partitions of n into odd parts.
7
1, 1, 2, 4, 5, 8, 12, 16, 22, 32, 42, 56, 76, 98, 128, 168, 213, 272, 348, 436, 548, 688, 852, 1056, 1308, 1603, 1964, 2404, 2920, 3544, 4296, 5176, 6230, 7488, 8958, 10704, 12772, 15182, 18024, 21368, 25254, 29808, 35136, 41308, 48504, 56880, 66552, 77776
OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
G. E. Andrews, R. P. Lewis, J. Lovejoy, Partitions with designated summands, Acta Arith. 105 (2002), no. 1, 51-66.
Nayandeep Deka Baruah and Kanan Kumari Ojah, Partitions with designated summands in which all parts are odd, INTEGERS 15 (2015), #A9.
FORMULA
Euler transform of period 12 sequence [1, 1, 2, 0, 1, 0, 1, 0, 2, 1, 1, 0, ...].
a(n) ~ 5^(1/4) * exp(sqrt(5*n)*Pi/3) / (2^(5/2)*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Nov 28 2015
G.f.: Product_{k>=1} (1 + Sum_{j>=1} j * x^(j*(2*k - 1))). - Ilya Gutkovskiy, Nov 06 2019
EXAMPLE
a(8)=22 because in the six partitions of 8 into odd parts, namely, 71,53,5111,3311,311111,11111111, the multiplicities of the parts are (1,1),(1,1),(1,3),(2,2),(1,5),(8) with products 1,1,3,4,5,8, having sum 22.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-2) +add(b(n-i*j, i-2)*j, j=1..n/i)))
end:
a:= n-> b(n, iquo(1+n, 2)*2-1):
seq(a(n), n=0..50); # Alois P. Heinz, Feb 26 2013
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 2] + Sum[b[n - i*j, i - 2]*j, {j, 1, n/i}]]]; a[n_] := b[n, Quotient[1 + n, 2]*2 - 1]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)
nmax=60; CoefficientList[Series[Product[(1-x^(4*k)) * (1+x^(3*k)) / ((1-x^k) * (1+x^(6*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2015 *)
Table[Total[l = Tally /@ Select[IntegerPartitions@n, VectorQ[#, OddQ] &];
Table[x = l[[i]]; Product[x[[j, 2]], {j, Length[x]}], {i, Length[l]}]], {n, 0, 47}] (* Robert Price, Jun 08 2020 *)
PROG
(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^4+A)*eta(x^6+A)^2/ eta(x+A)/eta(x^3+A)/eta(x^12+A), n))} /* Michael Somos, Jul 30 2006 */
CROSSREFS
Cf. A077285 (partitions with designated summands).
Sequence in context: A092268 A335702 A069259 * A039842 A188216 A238395
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Feb 16 2005
EXTENSIONS
More terms from Emeric Deutsch, Mar 28 2005
Name expanded by N. J. A. Sloane, Nov 21 2015
STATUS
approved