OFFSET
0,3
COMMENTS
Sum of products of multiplicities of parts in all partitions of n. The partitions of 4 are 4, 1+3, 2+2, 2+1+1, 1+1+1+1, the corresponding products are 1,1,2,2,4 and their sum is a(4) = 10. - Vladeta Jovovic, Feb 16 2005
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000
G. E. Andrews, R. P. Lewis, and J. Lovejoy, Partitions with designated summands, Acta Arith. 105 (2002), no. 1, 51-66.
William Y. C. Chen, Kathy Q. Ji, Hai-Tao Jin, and Erin Y. Y. Shen, On the Number of Partitions with Designated Summands, arXiv:1208.2210 [math.CO], 2012.
Daniel Herden, Mark R. Sepanski, Jonathan Stanfill, Cordell Hammon, Joel Henningsen, Henry Ickes, and Indalecio Ruiz, Partitions With Designated Summands Not Divisible by 2^L, 2, and 3^L Modulo 2, 4, and 3, arXiv:2101.04058 [math.CO], 2021. See also Integers (2023) Vol. 23, Art. No. A43.
N. J. A. Sloane, Transforms
FORMULA
Expansion of eta(q^6) / (eta(q) * eta(q^2) * eta(q^3)) in powers of q. - Michael Somos, Feb 05 2004
Euler transform of period 6 sequence [ 1, 2, 2, 2, 1, 2, ...]. - Michael Somos, Feb 05 2004
G.f.: P(x)*P(x^2)*P(x^3)/P(x^6), where P(x)=Product_{k>0} 1/(1-x^k) is the partition generating function (A000041).
G.f.: Product_{i>=1} (1-x^i+x^(2*i)) / (1-x^i)^2. - Vladeta Jovovic, Jan 16 2005
a(n) ~ 5^(3/4) * exp(Pi*sqrt(10*n)/3) / (2^(11/4) * 3^(3/2) * n^(5/4)). - Vaclav Kotesovec, Nov 28 2015
a(n) = Sum_{k>=1} k*A266477(n,k). - Alois P. Heinz, Dec 29 2015
G.f.: Product_{i>0} (1 + Sum_{j>0} j*x^(j*i)). - Seiichi Manyama, Oct 08 2017
EXAMPLE
a(3)=5 because the partitions of 3 with designated summands are 3', 2'1', 1'11, 11'1, 111'.
1 + x + 3*x^2 + 5*x^3 + 10*x^4 + 15*x^5 + 28*x^6 + 41*x^7 + 69*x^8 + 102*x^9 + ...
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +add(b(n-i*j, i-1)*j, j=1..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..50); # Alois P. Heinz, Feb 26 2013
MATHEMATICA
max = 50; f = Product[(1-x^i+x^(2*i))/(1-x^i)^2, {i, 1, max}]; s = Series[f, {x, 0, max}] // Normal; a[n_] := Coefficient[s, x, n]; Table[a[n], {n, 0, max}] (* Jean-François Alcover, May 06 2014, after Vladeta Jovovic *)
nmax=100; CoefficientList[Series[Product[(1+x^(3*k)) / ((1-x^k) * (1-x^(2*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2015 *)
QP = QPochhammer; s = QP[q^6]/(QP[q]*QP[q^2]*QP[q^3]) + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Dec 01 2015, adapted from PARI *)
Table[Total[l = Tally /@ IntegerPartitions@n;
Table[x = l[[i]]; Product[x[[j, 2]], {j, Length[x]}], {i, Length[l]}]], {n, 0, 41}] (* Robert Price, Jun 06 2020 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A) / (eta(x + A) * eta(x^2 + A) * eta(x^3 + A)), n))} /* Michael Somos, Feb 05 2004 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Jorn B. Olsson (olsson(AT)math.ku.dk), Nov 26 2003
EXTENSIONS
Edited and extended by Christian G. Bower, Jan 23 2004
STATUS
approved