login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077285
Number of partitions of n with designated summands.
17
1, 1, 3, 5, 10, 15, 28, 41, 69, 102, 160, 231, 352, 498, 732, 1027, 1470, 2031, 2856, 3896, 5382, 7272, 9896, 13233, 17800, 23579, 31362, 41219, 54288, 70791, 92456, 119698, 155097, 199512, 256664, 328134, 419436, 533162, 677412, 856573, 1082284, 1361679
OFFSET
0,3
COMMENTS
Sum of products of multiplicities of parts in all partitions of n. The partitions of 4 are 4, 1+3, 2+2, 2+1+1, 1+1+1+1, the corresponding products are 1,1,2,2,4 and their sum is a(4) = 10. - Vladeta Jovovic, Feb 16 2005
LINKS
G. E. Andrews, R. P. Lewis, and J. Lovejoy, Partitions with designated summands, Acta Arith. 105 (2002), no. 1, 51-66.
William Y. C. Chen, Kathy Q. Ji, Hai-Tao Jin, and Erin Y. Y. Shen, On the Number of Partitions with Designated Summands, arXiv:1208.2210 [math.CO], 2012.
Daniel Herden, Mark R. Sepanski, Jonathan Stanfill, Cordell Hammon, Joel Henningsen, Henry Ickes, and Indalecio Ruiz, Partitions With Designated Summands Not Divisible by 2^L, 2, and 3^L Modulo 2, 4, and 3, arXiv:2101.04058 [math.CO], 2021. See also Integers (2023) Vol. 23, Art. No. A43.
N. J. A. Sloane, Transforms
FORMULA
Expansion of eta(q^6) / (eta(q) * eta(q^2) * eta(q^3)) in powers of q. - Michael Somos, Feb 05 2004
Euler transform of period 6 sequence [ 1, 2, 2, 2, 1, 2, ...]. - Michael Somos, Feb 05 2004
G.f.: P(x)*P(x^2)*P(x^3)/P(x^6), where P(x)=Product_{k>0} 1/(1-x^k) is the partition generating function (A000041).
Equals EULER(DCONV(A000012, iEULER(A000027))).
G.f.: Product_{i>=1} (1-x^i+x^(2*i)) / (1-x^i)^2. - Vladeta Jovovic, Jan 16 2005
a(n) ~ 5^(3/4) * exp(Pi*sqrt(10*n)/3) / (2^(11/4) * 3^(3/2) * n^(5/4)). - Vaclav Kotesovec, Nov 28 2015
a(n) = Sum_{k>=1} k*A266477(n,k). - Alois P. Heinz, Dec 29 2015
G.f.: Product_{i>0} (1 + Sum_{j>0} j*x^(j*i)). - Seiichi Manyama, Oct 08 2017
EXAMPLE
a(3)=5 because the partitions of 3 with designated summands are 3', 2'1', 1'11, 11'1, 111'.
1 + x + 3*x^2 + 5*x^3 + 10*x^4 + 15*x^5 + 28*x^6 + 41*x^7 + 69*x^8 + 102*x^9 + ...
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +add(b(n-i*j, i-1)*j, j=1..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..50); # Alois P. Heinz, Feb 26 2013
MATHEMATICA
max = 50; f = Product[(1-x^i+x^(2*i))/(1-x^i)^2, {i, 1, max}]; s = Series[f, {x, 0, max}] // Normal; a[n_] := Coefficient[s, x, n]; Table[a[n], {n, 0, max}] (* Jean-François Alcover, May 06 2014, after Vladeta Jovovic *)
nmax=100; CoefficientList[Series[Product[(1+x^(3*k)) / ((1-x^k) * (1-x^(2*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2015 *)
QP = QPochhammer; s = QP[q^6]/(QP[q]*QP[q^2]*QP[q^3]) + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Dec 01 2015, adapted from PARI *)
Table[Total[l = Tally /@ IntegerPartitions@n;
Table[x = l[[i]]; Product[x[[j, 2]], {j, Length[x]}], {i, Length[l]}]], {n, 0, 41}] (* Robert Price, Jun 06 2020 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A) / (eta(x + A) * eta(x^2 + A) * eta(x^3 + A)), n))} /* Michael Somos, Feb 05 2004 */
CROSSREFS
Cf. A102186 (partitions into odd parts with designated summands).
Sequence in context: A326472 A326597 A008337 * A072523 A054473 A265508
KEYWORD
nonn
AUTHOR
Jorn B. Olsson (olsson(AT)math.ku.dk), Nov 26 2003
EXTENSIONS
Edited and extended by Christian G. Bower, Jan 23 2004
STATUS
approved