The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077288 First member of the Diophantine pair (m,k) that satisfies 6(m^2 + m) = k^2 + k: a(n) = m. 15
 0, 1, 3, 14, 34, 143, 341, 1420, 3380, 14061, 33463, 139194, 331254, 1377883, 3279081, 13639640, 32459560, 135018521, 321316523, 1336545574, 3180705674, 13230437223, 31485740221, 130967826660, 311676696540, 1296447829381, 3085281225183, 12833510467154 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Also nonnegative m such that 24*m^2 + 24*m + 1 is a square. - Gerald McGarvey, Apr 02 2005 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Mohammad K. Azarian, Diophantine Pair, Problem B-881, Fibonacci Quarterly, Vol. 37, No. 3, August 1999, pp. 277-278; Solution to Problem B-881, Fibonacci Quarterly, Vol. 38, No. 2, May 2000, pp. 183-184. Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021. Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021. Index entries for linear recurrences with constant coefficients, signature (1,10,-10,-1,1). FORMULA Let b(n) be A072256. Then a(2*n+2) = 2*a(2*n+1) - a(2*n) + b(n+1), a(2*n+3) = 2*a(2*n+2) - a(2*n+1) + b(n+2), with a(0)=0, a(1)=1. G.f.: x*(1+x)^2/((1-x)*(1-10*x^2+x^4)). a(n) = a(-1-n) for all n in Z. - Michael Somos, Jul 15 2018 a(n) = 10*a(n-2) - a(n-4) + 4, n > 4. - Vladimir Pletser, Feb 29 2020 a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) - a(n-4) + a(n-5). - Wesley Ivan Hurt, Jul 24 2020 2*a(n) + 1 = A080806(n+1). - R. J. Mathar, Oct 01 2021 EXAMPLE a(3) = 2*3 - 1 + 9 = 14, a(4) = 2*14 - 3 + 9 = 34, etc. G.f. = x + 3*x^2 + 14*x^3 + 34*x^4 + 143*x^5 + 341*x^6 + 1420*x^7 + 3380*x^8 + ... - Michael Somos, Jul 15 2018 MAPLE f := gfun:-rectoproc({a(-2) = 1, a(-1) = 0, a(0) = 0, a(1) = 1, a(n) = 10*a(n - 2) - a(n - 4) + 4}, a(n), remember); map(f, [\$ (0 .. 100)]); - Vladimir Pletser, Jul 24 2020 MATHEMATICA CoefficientList[Series[x*(1 + x)^2/((1 - x)*(1 - 10 x^2 + x^4)), {x, 0, 40}], x] (* T. D. Noe, Jun 04 2012 *) LinearRecurrence[{1, 10, -10, -1, 1}, {0, 1, 3, 14, 34}, 50] (* G. C. Greubel, Jul 15 2018 *) a[ n_] := With[{m = Max[n, -1 - n]}, SeriesCoefficient[ x (1 + x)^2 / ((1 - x) (1 - 10 x^2 + x^4)), {x, 0, m}]]; (* Michael Somos, Jul 15 2018 *) PROG (PARI) my(x='x+O('x^30)); concat([0], Vec(x*(1+x)^2/((1-x)*(1-10*x^2+x^4)))) \\ G. C. Greubel, Jul 15 2018 (MAGMA) m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x)^2/((1-x)*(1-10*x^2+x^4)))); // G. C. Greubel, Jul 15 2018 CROSSREFS The k values are in A077291 Cf. A077289, A077290, A077291. Cf. A053141. Sequence in context: A081269 A140064 A064226 * A094627 A009394 A076533 Adjacent sequences:  A077285 A077286 A077287 * A077289 A077290 A077291 KEYWORD easy,nonn AUTHOR Bruce Corrigan (scentman(AT)myfamily.com), Nov 03 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 04:32 EST 2021. Contains 349426 sequences. (Running on oeis4.)