login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077289
Triangular numbers that are 1/6 of another triangular number.
12
0, 1, 6, 105, 595, 10296, 58311, 1008910, 5713890, 98862891, 559902916, 9687554415, 54864771885, 949281469786, 5376187741821, 93019896484620, 526811533926580, 9115000574022981, 51622154137063026, 893177036357767525, 5058444293898249975, 87522234562487194476
OFFSET
0,3
COMMENTS
The triangular numbers multiplied by 6 are in A077290.
FORMULA
Let b(n) be A077288. Then a(n)=b(n)*(b(n)+1)/2.
G.f.: -x*(x^2+5*x+1) / ((x-1)*(x^2-10*x+1)*(x^2+10*x+1)). - Colin Barker, Jul 02 2013
a(n) = 98*a(n-2) - a(n-4) + 7. - Vladimir Pletser, Feb 19 2021
96*a(n) = 9*A072256(n+1) -2*(-1)^n*A054320(n) -7. - R. J. Mathar, Oct 01 2021
EXAMPLE
b(3)=14 so a(3) = 14*15/2 = 105, etc.
MAPLE
f := gfun:-rectoproc({a(-2) = 1, a(-1) = 0, a(0) = 0, a(1) = 1, a(n) = 98*a(n-2)-a(n-4)+7}, a(n), remember); map(f, [`$`(0 .. 1000)])[]; # Vladimir Pletser, Feb 19 2021
MATHEMATICA
tr6Q[n_]:= IntegerQ[1/2 (Sqrt[1+48n]-1)]; Select[Accumulate[ Range[0, 1380000]], tr6Q] (* Harvey P. Dale, Apr 21 2011 *)
PROG
(PARI)
T(n)=n*(n+1)\2;
istriang(n)=issquare(8*n+1);
for(n=0, 10^10, t=T(n); if ( t%6==0 && istriang(t\6), print1(t\6, ", ") ) );
\\ Joerg Arndt, Jul 03 2013
(PARI) concat(0, Vec(-x*(x^2+5*x+1) / ((x-1)*(x^2-10*x+1)*(x^2+10*x+1)) + O(x^100))) \\ Colin Barker, May 15 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Bruce Corrigan (scentman(AT)myfamily.com), Nov 03 2002
STATUS
approved