login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309378
a(n) is the smallest squarefree number m with n prime factors such that Sum_{prime q|m} 1/q - 1/m = P/Q, where P <> Q are primes, for n > 1, or a(n) = 1 if no such m.
2
1, 6, 105, 1330, 331230, 4081530, 127357230
OFFSET
1,2
COMMENTS
Associated fractions P/Q for n > 1 are 2/3, 2/3, 17/19, 191/181, 19/17, 5701/4241, .... Note that Q | m.
a(n) is the least m with Omega(m) = omega(m) = n such that A326689(m) is a prime P and A326690(m) is a prime Q, or a(n) = 1 if no such m.
EXAMPLE
1/2 + 1/3 - 1/6 = 2/3,
1/3 + 1/5 + 1/7 - 1/105 = 2/3,
1/2 + 1/5 + 1/7 + 1/19 - 1/1330 = 17/19,
....
6 = 2*3, 105 = 3*5*7, 1330 = 2*5*7*19, 331230 = 2*3*5*61*181, 127357230 = 2*3*5*17*53*151, ... - Jonathan Sondow, Jul 27 2019
MATHEMATICA
m=2; s={}; Do[f = FactorInteger[n]; p = f[[;; , 1]]; e = f[[;; , 2]]; If[Max[e] > 1 || Length[e] < m, Continue[]]; frac = Total@(1/p) - 1/n; num = Numerator[frac]; den = Denominator[frac]; If[den != num && PrimeQ[num] && PrimeQ[den], AppendTo[s, n]; m++], {n, 1, 5*10^6}]; s
PROG
(PARI) a(n) = {for(i = 2, oo, if(is(i, n), return(i)))}
is(m, qp) = {my(f = factor(m)); if(#f~ != qp, return(0)); if(Set(f[, 2]) != Set([1]), return(0)); s = sum(i = 1, qp, 1/f[i, 1]) - 1/m; isprime(denominator(s)) && isprime(numerator(s))} \\ David A. Corneth, Jul 27 2019
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
Amiram Eldar and Thomas Ordowski, Jul 26 2019
STATUS
approved