OFFSET
3,1
COMMENTS
The n-wheel graph is defined for n >= 4. The value of a(3) was computed using the complete graph on 3 vertices.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 3..200
Prateek Bhakta, Benjamin Brett Buckner, Lauren Farquhar, Vikram Kamat, Sara Krehbiel, Heather M. Russell, Cut-Colorings in Coloring Graphs, Graphs and Combinatorics, (2019) 35(1), 239-248.
Luis Cereceda, Janvan den Heuvel, Matthew Johnson, Connectedness of the graph of vertex-colourings, Discrete Mathematics, (2008) 308(5-6), 913-919.
Aalok Sathe, Coloring Graphs Library
Wikipedia, Wheel graph
Index entries for linear recurrences with constant coefficients, signature (6,-6,-16,15,18).
FORMULA
From Andrew Howroyd, Sep 10 2019: (Start)
a(n) = 10*(2^(n-1) - 2*(-1)^n + (n-1)*(3^(n-2) - 3*(-1)^n)).
a(n) = binomial(k, 2)*A106512(n-1, k-2) + k*(n-1)*(binomial(k-2, 2)*A106512(n-3, k-1) + binomial(k-3, 2)*A106512(n-2, k-1)) where k = 5.
a(n) = 6*a(n-1) - 6*a(n-2) - 16*a(n-3) + 15*a(n-4) + 18*a(n-5) for n > 7.
G.f.: 60*x^3*(3 - 14*x + 17*x^2 + 4*x^3 - 6*x^4)/((1 + x)^2*(1 - 2*x)*(1 - 3*x)^2).
(End)
PROG
(PARI) a(n) = {10*(2^(n-1) - 2*(-1)^n + (n-1)*(3^(n-2) - 3*(-1)^n))} \\ Andrew Howroyd, Sep 10 2019
(PARI) Vec(60*(3 - 14*x + 17*x^2 + 4*x^3 - 6*x^4)/((1 + x)^2*(1 - 2*x)*(1 - 3*x)^2) + O(x^30)) \\ Andrew Howroyd, Sep 10 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Aalok Sathe, Jul 26 2019
EXTENSIONS
Terms a(12) and beyond from Andrew Howroyd, Sep 10 2019
STATUS
approved