login
A364976
3-abundant numbers k such that k/(sigma(k)-3*k) is an integer.
2
180, 240, 360, 420, 540, 600, 780, 1080, 1344, 1872, 1890, 2016, 2184, 2352, 2376, 2688, 3192, 3276, 3744, 4284, 4320, 4680, 5292, 5376, 5796, 6048, 6552, 7128, 7440, 8190, 10416, 13776, 14850, 18600, 19824, 19872, 20496, 21528, 22932, 25056, 26208, 26496, 26784
OFFSET
1,1
COMMENTS
Analogous to A153501 as 3-abundant numbers (A068403) are analogous to abundant numbers (A005101).
Numbers k such that the sum of the divisors of k except for one of them is equal to 3*k.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..576 (terms below 2.5*10^10)
EXAMPLE
180 is a term since sigma(180) - 3*180 = 6 > 0 and 180 is divisible by 6.
MATHEMATICA
Select[Range[27000], (d = DivisorSigma[1, #] - 3*#) > 0 && Divisible[#, d] &]
PROG
(PARI) is(n) = {my(d = sigma(n) - 3*n); d > 0 && n%d == 0; }
CROSSREFS
Subsequence of A068403.
A027687 is a subsequence.
Sequence in context: A068403 A291457 A329189 * A289056 A309380 A030636
KEYWORD
nonn
AUTHOR
Amiram Eldar, Aug 15 2023
STATUS
approved