login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265508
Number of unordered pairs {p,q} of partitions of n into distinct parts such that p and q are incomparable in the dominance order.
3
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 5, 10, 15, 29, 42, 68, 109, 162, 240, 364, 527, 749, 1096, 1529, 2162, 3026, 4179, 5702, 7926, 10650, 14412, 19437, 26042, 34560, 46077, 60617, 79893, 104850, 136851, 177884, 231526, 298868, 385221, 496159, 635725, 812342
OFFSET
0,12
LINKS
FORMULA
a(n) = A000217(A000009(n)) - A265506(n).
EXAMPLE
a(9) = 1: {621,54}.
a(10) = 1: {721,64}.
a(11) = 3: {821,74}, {821,65}, {731,65}.
a(12) = 5: {6321,543}, {921,84}, {921,75}, {831,75}, {732,651}.
MAPLE
b:= proc(n, m, i, j, t) option remember; `if`(n<m, 0, `if`(n=0, 1,
`if`(i<1, 0, `if`(t and j>0, b(n, m, i, j-1, true), 0)+
b(n, m, i-1, j, false)+b(n-i, m-j, max(0, min(n-i, i-1)),
max(0, min(m-j, j-1)), true))))
end:
g:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, 1, g(n, i-1)+`if`(i>n, 0, g(n-i, i-1))))
end:
a:= n-> (t-> t*(t+1)/2)(g(n$2))-b(n$4, true):
seq(a(n), n=0..45);
MATHEMATICA
b[n_, m_, i_, j_, t_] := b[n, m, i, j, t] = If[n < m, 0, If[n == 0, 1, If[i < 1, 0, If[t && j > 0, b[n, m, i, j-1, True], 0] + b[n, m, i-1, j, False] + b[n-i, m-j, Max[0, Min[n-i, i-1]], Max[0, Min[m-j, j-1]], True]]]]; g[n_, i_] := g[n, i] = If[i*(i+1)/2 < n, 0, If[n == 0, 1, g[n, i-1] + If[i > n, 0, g[n-i, i-1]]]]; a[n_] := (#*(#+1)/2&)[g[n, n]] - b[n, n, n, n, True]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Feb 05 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 09 2015
STATUS
approved