OFFSET
0,12
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..250
Wikipedia, Dominance Order
EXAMPLE
a(9) = 1: {621,54}.
a(10) = 1: {721,64}.
a(11) = 3: {821,74}, {821,65}, {731,65}.
a(12) = 5: {6321,543}, {921,84}, {921,75}, {831,75}, {732,651}.
MAPLE
b:= proc(n, m, i, j, t) option remember; `if`(n<m, 0, `if`(n=0, 1,
`if`(i<1, 0, `if`(t and j>0, b(n, m, i, j-1, true), 0)+
b(n, m, i-1, j, false)+b(n-i, m-j, max(0, min(n-i, i-1)),
max(0, min(m-j, j-1)), true))))
end:
g:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, 1, g(n, i-1)+`if`(i>n, 0, g(n-i, i-1))))
end:
a:= n-> (t-> t*(t+1)/2)(g(n$2))-b(n$4, true):
seq(a(n), n=0..45);
MATHEMATICA
b[n_, m_, i_, j_, t_] := b[n, m, i, j, t] = If[n < m, 0, If[n == 0, 1, If[i < 1, 0, If[t && j > 0, b[n, m, i, j-1, True], 0] + b[n, m, i-1, j, False] + b[n-i, m-j, Max[0, Min[n-i, i-1]], Max[0, Min[m-j, j-1]], True]]]]; g[n_, i_] := g[n, i] = If[i*(i+1)/2 < n, 0, If[n == 0, 1, g[n, i-1] + If[i > n, 0, g[n-i, i-1]]]]; a[n_] := (#*(#+1)/2&)[g[n, n]] - b[n, n, n, n, True]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Feb 05 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 09 2015
STATUS
approved