login
A327042
Expansion of Product_{k>=1} 1/((1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k))).
5
1, 1, 3, 5, 10, 15, 29, 42, 72, 107, 170, 246, 382, 541, 807, 1139, 1650, 2292, 3267, 4479, 6261, 8518, 11716, 15771, 21449, 28599, 38430, 50876, 67654, 88854, 117171, 152775, 199785, 258901, 336024, 432744, 558027, 714494, 915555, 1166243, 1485792, 1883031
OFFSET
0,3
COMMENTS
Differs from A006168.
LINKS
FORMULA
a(n) ~ 11 * exp(sqrt(11*n)*Pi/3) / (48*sqrt(3)*n^(3/2)).
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[1/((1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k))), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 16 2019
STATUS
approved