The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A327044 Expansion of Product_{k>=1} 1/((1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k)) * (1 - x^(4*k)) * (1 - x^(5*k))). 5
 1, 1, 3, 5, 11, 17, 33, 50, 89, 135, 223, 332, 530, 775, 1190, 1724, 2576, 3677, 5380, 7586, 10895, 15203, 21480, 29666, 41373, 56593, 77965, 105755, 144155, 193947, 261894, 349719, 468193, 620910, 824743, 1086661, 1433205, 1876865, 2459100, 3202155, 4170043 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Differs from A006170. In general, for fixed m>=1, if g.f. = Product_{k>=1} (Product_{j=1..m} 1/(1 - x^(j*k))), then a(n,m) ~ sqrt(Gamma(m+1)) * HarmonicNumber(m)^((m+1)/4) * exp(Pi*sqrt(2*HarmonicNumber(m)*n/3)) / (2^((3*m+5)/4) * 3^((m+1)/4) * n^((m+3)/4)). LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 FORMULA a(n) ~ 137^(3/2) * exp(sqrt(137*n/10)*Pi/3) / (2880*sqrt(6)*n^2). MATHEMATICA nmax = 50; CoefficientList[Series[Product[1/((1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k)) * (1 - x^(4*k)) * (1 - x^(5*k))), {k, 1, nmax}], {x, 0, nmax}], x] CROSSREFS Cf. A000041, A002513, A327042, A327043. Cf. A006171. Sequence in context: A124179 A124173 A091610 * A006170 A147071 A006171 Adjacent sequences: A327041 A327042 A327043 * A327045 A327046 A327047 KEYWORD nonn AUTHOR Vaclav Kotesovec, Aug 16 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 31 17:41 EST 2023. Contains 359980 sequences. (Running on oeis4.)