login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A327047 Expansion of Product_{k>=1} (1 + x^k) * (1 + x^(2*k)) * (1 + x^(3*k)) * (1 + x^(4*k)) * (1 + x^(5*k)). 4
1, 1, 2, 4, 6, 10, 16, 23, 34, 51, 72, 101, 143, 195, 267, 366, 487, 650, 866, 1135, 1487, 1940, 2504, 3226, 4145, 5283, 6714, 8513, 10725, 13481, 16905, 21085, 26244, 32588, 40299, 49732, 61229, 75131, 92004, 112435, 137009, 166627, 202269, 244919, 296038 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

In general, for fixed m>=1, if g.f. = Product_{k>=1} (Product_{j=1..m} (1 + x^(j*k))), then a(n) ~ HarmonicNumber(m)^(1/4) * exp(Pi*sqrt(HarmonicNumber(m)*n/3)) / (2^((m+3)/2) * 3^(1/4) * n^(3/4)).

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..10000

FORMULA

a(n) ~ 137^(1/4) * exp(sqrt(137*n/5)*Pi/6) / (2^(9/2)*sqrt(3)*5^(1/4)*n^(3/4)).

MATHEMATICA

nmax = 50; CoefficientList[Series[Product[(1+x^k) * (1+x^(2*k)) * (1+x^(3*k)) * (1+x^(4*k)) * (1+x^(5*k)), {k, 1, nmax}], {x, 0, nmax}], x]

CROSSREFS

Cf. A000009, A001935, A327045, A327046.

Cf. A107742, A327044.

Sequence in context: A323283 A279715 A132212 * A332281 A241903 A261204

Adjacent sequences: A327044 A327045 A327046 * A327048 A327049 A327050

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Aug 16 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 2 18:34 EST 2023. Contains 360023 sequences. (Running on oeis4.)